These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36521841)

  • 41. Molecular dynamics simulation of cation-phospholipid clustering in phospholipid bilayers: possible role in stalk formation during membrane fusion.
    Tsai HH; Lai WX; Lin HD; Lee JB; Juang WF; Tseng WH
    Biochim Biophys Acta; 2012 Nov; 1818(11):2742-55. PubMed ID: 22683599
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A lipocentric view of peptide-induced pores.
    Fuertes G; Giménez D; Esteban-Martín S; Sánchez-Muñoz OL; Salgado J
    Eur Biophys J; 2011 Apr; 40(4):399-415. PubMed ID: 21442255
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Role of Ion-Phospholipid Interactions in Zwitterionic Phospholipid Bilayer Ion Permeation.
    Deplazes E; Tafalla BD; Cranfield CG; Garcia A
    J Phys Chem Lett; 2020 Aug; 11(15):6353-6358. PubMed ID: 32687371
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Nanoparticle permeation induces water penetration, ion transport, and lipid flip-flop.
    Song B; Yuan H; Pham SV; Jameson CJ; Murad S
    Langmuir; 2012 Dec; 28(49):16989-7000. PubMed ID: 23171434
    [TBL] [Abstract][Full Text] [Related]  

  • 45. An energy-barrier model for the permeation of monovalent and divalent cations through the maxi cation channel in the plasma membrane of rye roots.
    White PJ; Ridout MS
    J Membr Biol; 1999 Mar; 168(1):63-75. PubMed ID: 10051690
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Surface-functionalized nanoparticle permeation triggers lipid displacement and water and ion leakage.
    Oroskar PA; Jameson CJ; Murad S
    Langmuir; 2015 Jan; 31(3):1074-85. PubMed ID: 25549137
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational studies of membrane pore formation induced by Pin2.
    Velasco-Bolom JL; Garduño-Juárez R
    J Biomol Struct Dyn; 2022 Jul; 40(11):5060-5068. PubMed ID: 33397200
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Molecular Dynamics Simulations Based on Polarizable Models Show that Ion Permeation Interconverts between Different Mechanisms as a Function of Membrane Thickness.
    Chen P; Vorobyov I; Roux B; Allen TW
    J Phys Chem B; 2021 Feb; 125(4):1020-1035. PubMed ID: 33493394
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Ion Channels Made from a Single Membrane-Spanning DNA Duplex.
    Göpfrich K; Li CY; Mames I; Bhamidimarri SP; Ricci M; Yoo J; Mames A; Ohmann A; Winterhalter M; Stulz E; Aksimentiev A; Keyser UF
    Nano Lett; 2016 Jul; 16(7):4665-9. PubMed ID: 27324157
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Role of membrane lipids for the activity of pore forming peptides and proteins.
    Fuertes G; Giménez D; Esteban-Martin S; Garcia-Sáez A; Sánchez O; Salgado J
    Adv Exp Med Biol; 2010; 677():31-55. PubMed ID: 20687479
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Computational Approach for Modeling Neutron Scattering Data from Lipid Bilayers.
    Carrillo JY; Katsaras J; Sumpter BG; Ashkar R
    J Chem Theory Comput; 2017 Feb; 13(2):916-925. PubMed ID: 28080059
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Label-free and charge-sensitive dynamic imaging of lipid membrane hydration on millisecond time scales.
    Tarun OB; Hannesschläger C; Pohl P; Roke S
    Proc Natl Acad Sci U S A; 2018 Apr; 115(16):4081-4086. PubMed ID: 29610320
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Elementary processes for the entry of cell-penetrating peptides into lipid bilayer vesicles and bacterial cells.
    Islam MZ; Sharmin S; Moniruzzaman M; Yamazaki M
    Appl Microbiol Biotechnol; 2018 May; 102(9):3879-3892. PubMed ID: 29523934
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Control of cation permeation through the nicotinic receptor channel.
    Wang HL; Cheng X; Taylor P; McCammon JA; Sine SM
    PLoS Comput Biol; 2008 Feb; 4(2):e41. PubMed ID: 18282090
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Alpha-tocopherol inhibits pore formation in oxidized bilayers.
    Boonnoy P; Karttunen M; Wong-Ekkabut J
    Phys Chem Chem Phys; 2017 Feb; 19(8):5699-5704. PubMed ID: 28138670
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Translocation of alkali metal cations by lipophilic cyclodextrin derivatives through black lipid membranes.
    Kobayashi K; Mittler-Neher S; Spinke J; Wenz G; Knoll W
    Biochim Biophys Acta; 1998 Jan; 1368(1):35-40. PubMed ID: 9459582
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cooperative Effects of an Antifungal Moiety and DMSO on Pore Formation over Lipid Membranes Revealed by Free Energy Calculations.
    Kasparyan G; Poojari C; Róg T; Hub JS
    J Phys Chem B; 2020 Oct; 124(40):8811-8821. PubMed ID: 32924486
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In silico assessment of the conduction mechanism of the Ryanodine Receptor 1 reveals previously unknown exit pathways.
    Heinz LP; Kopec W; de Groot BL; Fink RHA
    Sci Rep; 2018 May; 8(1):6886. PubMed ID: 29720700
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Investigation of the ionic conditions in SiRNA-mediated delivery through its carriers in the cell membrane: a molecular dynamic simulation.
    Darvishi MH; Allahverdi A; Hashemzadeh H; Javadi HR
    Sci Rep; 2022 Oct; 12(1):17520. PubMed ID: 36266467
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Thermodynamics of cell-penetrating HIV1 TAT peptide insertion into PC/PS/CHOL model bilayers through transmembrane pores: the roles of cholesterol and anionic lipids.
    Hu Y; Patel S
    Soft Matter; 2016 Aug; 12(32):6716-27. PubMed ID: 27435187
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.