These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
154 related articles for article (PubMed ID: 36522017)
1. Adsorption and membrane separation for removal and recovery of volatile organic compounds. Gan G; Fan S; Li X; Zhang Z; Hao Z J Environ Sci (China); 2023 Jan; 123():96-115. PubMed ID: 36522017 [TBL] [Abstract][Full Text] [Related]
2. [Study on control and management for industrial volatile organic compounds (VOCs) in China]. Wang HL; Zhang GN; Nei L; Wang YF; Hao ZP Huan Jing Ke Xue; 2011 Dec; 32(12):3462-8. PubMed ID: 22468504 [TBL] [Abstract][Full Text] [Related]
3. [Characteristics and countermeasures of volatile organic compounds (VOCs) emission in China]. Wang TY; Li QF; Lü YL Huan Jing Ke Xue; 2013 Dec; 34(12):4756-63. PubMed ID: 24640920 [TBL] [Abstract][Full Text] [Related]
4. A review of whole-process control of industrial volatile organic compounds in China. Wang H; Sun S; Nie L; Zhang Z; Li W; Hao Z J Environ Sci (China); 2023 Jan; 123():127-139. PubMed ID: 36521978 [TBL] [Abstract][Full Text] [Related]
5. Volatile Organic Compounds (VOCs) as Environmental Pollutants: Occurrence and Mitigation Using Nanomaterials. David E; Niculescu VC Int J Environ Res Public Health; 2021 Dec; 18(24):. PubMed ID: 34948756 [TBL] [Abstract][Full Text] [Related]
6. [Characteristics of Industrial Volatile Organic Compounds(VOCs) Emission in China from 2011 to 2019]. Liu RY; Zhong MF; Zhao XY; Lu SW; Tian JT; Li YS; Hou M; Liang XM; Huang HM; Fan LY; Ye DQ Huan Jing Ke Xue; 2021 Nov; 42(11):5169-5179. PubMed ID: 34708956 [TBL] [Abstract][Full Text] [Related]
7. [Status and needs research for on-line monitoring of VOCs emissions from stationary sources]. Wang Q; Zhou G; Zhong Q; Zhao JB; Yang K Huan Jing Ke Xue; 2013 Dec; 34(12):4764-70. PubMed ID: 24640921 [TBL] [Abstract][Full Text] [Related]
8. [Process-based Emission Characteristics of Volatile Organic Compounds (VOCs) from Paint Industry in the Yangtze River Delta, China]. Mo ZW; Niu H; Lu SH; Shao M; Gou B Huan Jing Ke Xue; 2015 Jun; 36(6):1944-51. PubMed ID: 26387293 [TBL] [Abstract][Full Text] [Related]
9. Chlorinated volatile organic compounds (Cl-VOCs) in environment - sources, potential human health impacts, and current remediation technologies. Huang B; Lei C; Wei C; Zeng G Environ Int; 2014 Oct; 71():118-38. PubMed ID: 25016450 [TBL] [Abstract][Full Text] [Related]
10. A comprehensive review and perspective research in technology integration for the treatment of gaseous volatile organic compounds. Baskaran D; Dhamodharan D; Behera US; Byun HS Environ Res; 2024 Jun; 251(Pt 1):118472. PubMed ID: 38452912 [TBL] [Abstract][Full Text] [Related]
11. Emission characteristics and associated health risk assessment of volatile organic compounds from a typical coking wastewater treatment plant. Zhang Y; Wei C; Yan B Sci Total Environ; 2019 Nov; 693():133417. PubMed ID: 31374506 [TBL] [Abstract][Full Text] [Related]
12. [Industrial Volatile Organic Compounds (VOCs) Emission Inventory in China]. Liang XM; Sun XB; Xu JT; Ye DQ; Chen LG Huan Jing Ke Xue; 2020 Nov; 41(11):4767-4775. PubMed ID: 33124221 [TBL] [Abstract][Full Text] [Related]
13. Emissions of volatile organic compounds (VOCs) from cooking and their speciation: A case study for Shanghai with implications for China. Wang H; Xiang Z; Wang L; Jing S; Lou S; Tao S; Liu J; Yu M; Li L; Lin L; Chen Y; Wiedensohler A; Chen C Sci Total Environ; 2018 Apr; 621():1300-1309. PubMed ID: 29054635 [TBL] [Abstract][Full Text] [Related]
14. New device for time-averaged measurement of volatile organic compounds (VOCs). Santiago Sánchez N; Tejada Alarcón S; Tortajada Santonja R; Llorca-Pórcel J Sci Total Environ; 2014 Jul; 485-486():720-725. PubMed ID: 24388502 [TBL] [Abstract][Full Text] [Related]
15. Reduction of particulate matter and volatile organic compounds in biorefineries: A state-of-the-art review. Ubando AT; Africa ADM; Maniquiz-Redillas MC; Culaba AB; Chen WH J Hazard Mater; 2021 Feb; 403():123955. PubMed ID: 33264999 [TBL] [Abstract][Full Text] [Related]
16. [Emission strength and source apportionment of volatile organic compounds in Shanghai during 2010 EXPO]. Wang HL; Chen CH; Huang HY; Wang Q; Chen YR; Huang C; Li L; Zhang GF; Chen MH; Lou SR; Qiao LP Huan Jing Ke Xue; 2012 Dec; 33(12):4151-8. PubMed ID: 23379136 [TBL] [Abstract][Full Text] [Related]
17. Ozone and secondary organic aerosol formation potential from anthropogenic volatile organic compounds emissions in China. Wu W; Zhao B; Wang S; Hao J J Environ Sci (China); 2017 Mar; 53():224-237. PubMed ID: 28372747 [TBL] [Abstract][Full Text] [Related]
18. Probing the adsorption characteristic of metal-organic framework MIL-101 for volatile organic compounds by quartz crystal microbalance. Huang CY; Song M; Gu ZY; Wang HF; Yan XP Environ Sci Technol; 2011 May; 45(10):4490-6. PubMed ID: 21500773 [TBL] [Abstract][Full Text] [Related]
19. Emission characteristics of volatile organic compounds during a typical top-charging coking process. Wang J; Li X; Wang B; Xiong J; Li Y; Guo Y; Zhu T; Xu W Environ Pollut; 2022 Sep; 308():119648. PubMed ID: 35718048 [TBL] [Abstract][Full Text] [Related]
20. A comprehensive study on emission of volatile organic compounds for light duty gasoline passenger vehicles in China: Illustration of impact factors and renewal emissions of major compounds. Li B; Wang J; Wang J; Zhang L; Zhang Q Environ Res; 2021 Feb; 193():110461. PubMed ID: 33188762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]