These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36522070)

  • 1. Investigating aldehyde and ketone compounds produced from indoor cooking emissions and assessing their health risk to human beings.
    Zhang W; Bai Z; Shi L; Son JH; Li L; Wang L; Chen J
    J Environ Sci (China); 2023 May; 127():389-398. PubMed ID: 36522070
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union: comparison of measured and modelled exposure data.
    Bruinen de Bruin Y; Koistinen K; Kephalopoulos S; Geiss O; Tirendi S; Kotzias D
    Environ Sci Pollut Res Int; 2008 Jul; 15(5):417-30. PubMed ID: 18491156
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Personal and ambient exposures to air toxics in Camden, New Jersey.
    Lioy PJ; Fan Z; Zhang J; Georgopoulos P; Wang SW; Ohman-Strickland P; Wu X; Zhu X; Harrington J; Tang X; Meng Q; Jung KH; Kwon J; Hernandez M; Bonnano L; Held J; Neal J;
    Res Rep Health Eff Inst; 2011 Aug; (160):3-127; discussion 129-51. PubMed ID: 22097188
    [TBL] [Abstract][Full Text] [Related]  

  • 4. [Atmospheric Pollutant Emission Characteristics from the Cooking Process of Traditional Beijing Roast Duck].
    Xu M; He WQ; Nie L; Han LH; Pan T; Shi AJ
    Huan Jing Ke Xue; 2017 Aug; 38(8):3139-3145. PubMed ID: 29964919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Formation pathways of aldehydes from heated cooking oils.
    Takhar M; Li Y; Ditto JC; Chan AWH
    Environ Sci Process Impacts; 2023 Feb; 25(2):165-175. PubMed ID: 35194622
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Characterization of Volatile Organic Compounds from Cooking Emissions].
    Gao YQ; Wang HL; Xu RZ; Jing SA; Liu YH; Peng YR
    Huan Jing Ke Xue; 2019 Apr; 40(4):1627-1633. PubMed ID: 31087902
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of cooking method, cooking oil, and food type on aldehyde emissions in cooking oil fumes.
    Peng CY; Lan CH; Lin PC; Kuo YC
    J Hazard Mater; 2017 Feb; 324(Pt B):160-167. PubMed ID: 27780622
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Airborne carbonyls from motor vehicle emissions in two highway tunnels.
    Grosjean D; Grosjean E
    Res Rep Health Eff Inst; 2002 Jan; (107):57-78; discussion 79-92. PubMed ID: 11954678
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formaldehyde, acrolein and other carbonyls in dwellings of university students. Levels and source characterization.
    Villanueva F; Lara S; Notario A; Amo-Salas M; Cabañas B
    Chemosphere; 2022 Feb; 288(Pt 1):132429. PubMed ID: 34606894
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cooking activities in a domestic kitchen: Chemical and toxicological profiling of emissions.
    Alves CA; Vicente ED; Evtyugina M; Vicente AMP; Sainnokhoi TA; Kováts N
    Sci Total Environ; 2021 Jun; 772():145412. PubMed ID: 33581534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Indoor air quality in a restaurant kitchen using margarine for deep-frying.
    Sofuoglu SC; Toprak M; Inal F; Cimrin AH
    Environ Sci Pollut Res Int; 2015 Oct; 22(20):15703-11. PubMed ID: 26022397
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carbonyl levels in indoor and outdoor air in Mexico City and Xalapa, Mexico.
    Báez A; Padilla H; García R; Torres Mdel C; Rosas I; Belmont R
    Sci Total Environ; 2003 Jan; 302(1-3):211-26. PubMed ID: 12526910
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Levels and determinants of formaldehyde, acetaldehyde, and acrolein in residential indoor air in Prince Edward Island, Canada.
    Gilbert NL; Guay M; David Miller J; Judek S; Chan CC; Dales RE
    Environ Res; 2005 Sep; 99(1):11-7. PubMed ID: 16053923
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluctuation in time-resolved PM
    Qi M; Du W; Zhu X; Wang W; Lu C; Chen Y; Shen G; Cheng H; Zeng EY; Tao S
    Environ Pollut; 2019 Jan; 244():304-313. PubMed ID: 30343231
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hazardous airborne carbonyls emissions in industrial workplaces in China.
    Ho SS; Ip HS; Ho KF; Ng LP; Chan CS; Dai WT; Cao JJ
    J Air Waste Manag Assoc; 2013 Jul; 63(7):864-77. PubMed ID: 23926855
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of carbonyls in a 13-story building.
    Báez AP; Padilla HG; García RM; Belmont RD; Torres Mdel C
    Environ Sci Pollut Res Int; 2004; 11(6):400-4. PubMed ID: 15603530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Carbonyl compounds in dining areas, kitchens and exhaust streams in restaurants with varying cooking methods in Kaohsiung, Taiwan.
    Cheng JH; Lee YS; Chen KS
    J Environ Sci (China); 2016 Mar; 41():218-226. PubMed ID: 26969068
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Origin, occurrence, and source emission rate of acrolein in residential indoor air.
    Seaman VY; Bennett DH; Cahill TM
    Environ Sci Technol; 2007 Oct; 41(20):6940-6. PubMed ID: 17993132
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization and health risk assessment of airborne pollutants in commercial restaurants in northwestern China: Under a low ventilation condition in wintertime.
    Dai W; Zhong H; Li L; Cao J; Huang Y; Shen M; Wang L; Dong J; Tie X; Ho SSH; Ho KF
    Sci Total Environ; 2018 Aug; 633():308-316. PubMed ID: 29574375
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Real-time molecular characterization of air pollutants in a Hong Kong residence: Implication of indoor source emissions and heterogeneous chemistry.
    Lyu X; Huo Y; Yang J; Yao D; Li K; Lu H; Zeren Y; Guo H
    Indoor Air; 2021 Sep; 31(5):1340-1352. PubMed ID: 33772878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.