BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36522091)

  • 1. Natural siderite derivatives activated peroxydisulfate toward oxidation of organic contaminant: A green soil remediation strategy.
    Zhong C; Jiang Y; Liu Q; Sun X; Yu J
    J Environ Sci (China); 2023 May; 127():615-627. PubMed ID: 36522091
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neutralization potential determination of siderite (FeCO3) using selected oxidants.
    Haney EB; Haney RL; Hossner LR; White GN
    J Environ Qual; 2006; 35(3):871-9. PubMed ID: 16641324
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The pH-dependent degradation of sulfadiazine using natural siderite activating PDS: The role of singlet oxygen.
    Sun F; Chen T; Liu H; Zou X; Zhai P; Chu Z; Shu D; Wang H; Chen D
    Sci Total Environ; 2021 Aug; 784():147117. PubMed ID: 33895517
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A feasible approach for azo-dye methyl orange degradation in siderite/H
    Song W; Li J; Zhang X; Feng J; Du X; Wang Q; Fu C; Qiu W; Wang Z; Gao X
    J Environ Manage; 2022 Apr; 308():114397. PubMed ID: 35121467
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influencing mechanisms of siderite and magnetite, on naphthalene biodegradation: Insights from degradability and mineral surface structure.
    Shen X; Dong W; Wan Y; Feng K; Liu Y; Wei Y
    J Environ Manage; 2021 Dec; 299():113648. PubMed ID: 34479148
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic activation of peroxydisulfate by secondary mineral derived self-modified iron-based composite for florfenicol degradation: Performance and mechanism.
    Zhang K; Yang Q; Jin Y; He P; Li Q; Chen P; Zhu J; Gan M
    Chemosphere; 2023 Feb; 313():137616. PubMed ID: 36563721
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nano- and micro-scale zerovalent iron-activated peroxydisulfate for methyl phenyl sulfoxide probe transformation in aerobic water: Quantifying the relative roles of SO
    Wang Z; Yu Y; Guo Q; Guan C; Jiang J
    Water Res; 2022 Sep; 223():119014. PubMed ID: 36041367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nonradical Oxidation of Pollutants with Single-Atom-Fe(III)-Activated Persulfate: Fe(V) Being the Possible Intermediate Oxidant.
    Jiang N; Xu H; Wang L; Jiang J; Zhang T
    Environ Sci Technol; 2020 Nov; 54(21):14057-14065. PubMed ID: 33094996
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel discovery of a heterogeneous Fenton-like system based on natural siderite: A wide range of pH values from 3 to 9.
    Sun F; Liu H; Wang H; Shu D; Chen T; Zou X; Huang F; Chen D
    Sci Total Environ; 2020 Jan; 698():134293. PubMed ID: 31514027
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Grinding siderite with ferric sulfate to generate an active ferrous source for Cr(VI) reduction.
    Zuo Q; Yang Y; Xie X; Yang L; Zhang Q; He X
    Chemosphere; 2024 Aug; 361():142516. PubMed ID: 38850691
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Degradation of chlorinated organic solvents in aqueous percarbonate system using zeolite supported nano zero valent iron (Z-nZVI) composite.
    Danish M; Gu X; Lu S; Naqvi M
    Environ Sci Pollut Res Int; 2016 Jul; 23(13):13298-307. PubMed ID: 27023817
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fenton-like oxidation and mineralization of phenol using synthetic Fe(II)-Fe(III) green rusts.
    Hanna K; Kone T; Ruby C
    Environ Sci Pollut Res Int; 2010 Jan; 17(1):124-34. PubMed ID: 19350299
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In-situ production of iron flocculation and reactive oxygen species by electrochemically decomposing siderite: An innovative Fe-EC route to remove trivalent arsenic.
    Chen M; Hu H; Chen M; Wang C; Wang Q; Zeng C; Shi Q; Song W; Li X; Zhang Q
    J Hazard Mater; 2023 Jan; 441():129884. PubMed ID: 36084465
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into naphthalene degradation in aqueous solution and soil slurry medium: Performance and mechanisms.
    Zeng G; Yang R; Zhou Z; Huang J; Danish M; Lyu S
    Chemosphere; 2022 Mar; 291(Pt 2):132761. PubMed ID: 34736941
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-efficiency degradation of organic pollutants with Fe, N co-doped biochar catalysts via persulfate activation.
    Li X; Jia Y; Zhou M; Su X; Sun J
    J Hazard Mater; 2020 Oct; 397():122764. PubMed ID: 32388092
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of interaction between ascorbic acid and soil iron-containing minerals for peroxydisulfate activation and organophosphorus flame retardant degradation.
    Dong X; Dai M; Yang T; Chen L; Yu H; Chen L; Zhao R; Jiang C
    Environ Res; 2024 Mar; 244():117883. PubMed ID: 38072104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arsenic concentration in porewater of an alkaline coal ash disposal site: Roles of siderite precipitation/dissolution and soil cover.
    Kim K; Park SM; Kim J; Kim SH; Kim Y; Moon JT; Hwang GS; Cha WS
    Chemosphere; 2009 Sep; 77(2):222-7. PubMed ID: 19682722
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Removal of arsenite from water by synthetic siderite: behaviors and mechanisms.
    Guo H; Li Y; Zhao K; Ren Y; Wei C
    J Hazard Mater; 2011 Feb; 186(2-3):1847-54. PubMed ID: 21232858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Highly efficient degradation of phenolic compounds by Fe(II)-activated dual oxidant (persulfate/calcium peroxide) system.
    Masud MAA; Kim DG; Shin WS
    Chemosphere; 2022 Jul; 299():134392. PubMed ID: 35331746
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-existing siderite alleviates the Fe(II) oxidation-induced inactivation of Fe(III)-reducing bacteria.
    Huang Y; Zhao S; Liu H; Chen R; Zhao L; Liu S
    Sci Total Environ; 2021 Aug; 781():146489. PubMed ID: 33798884
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.