These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

259 related articles for article (PubMed ID: 36522135)

  • 21. Polar oceans in a changing climate.
    Barnes DKA; Tarling GA
    Curr Biol; 2017 Jun; 27(11):R454-R460. PubMed ID: 28586678
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bacterial communities of surface mixed layer in the Pacific sector of the western Arctic Ocean during sea-ice melting.
    Han D; Kang I; Ha HK; Kim HC; Kim OS; Lee BY; Cho JC; Hur HG; Lee YK
    PLoS One; 2014; 9(1):e86887. PubMed ID: 24497990
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Seasonal ecology in ice-covered Arctic seas - Considerations for spill response decision making.
    Aune M; Aniceto AS; Biuw M; Daase M; Falk-Petersen S; Leu E; Ottesen CAM; Sagerup K; Camus L
    Mar Environ Res; 2018 Oct; 141():275-288. PubMed ID: 30249455
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Baseline monitoring of the western Arctic Ocean estimates 20% of Canadian basin surface waters are undersaturated with respect to aragonite.
    Robbins LL; Wynn JG; Lisle JT; Yates KK; Knorr PO; Byrne RH; Liu X; Patsavas MC; Azetsu-Scott K; Takahashi T
    PLoS One; 2013; 8(9):e73796. PubMed ID: 24040074
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Importance of seasonal sea ice in the western Arctic ocean to the Arctic and global microplastic budgets.
    Kim SK; Lee HJ; Kim JS; Kang SH; Yang EJ; Cho KH; Tian Z; Andrady A
    J Hazard Mater; 2021 Sep; 418():125971. PubMed ID: 34329003
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Psychrophilic versus psychrotolerant bacteria--occurrence and significance in polar and temperate marine habitats.
    Helmke E; Weyland H
    Cell Mol Biol (Noisy-le-grand); 2004 Jul; 50(5):553-61. PubMed ID: 15559972
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Possible enhancement in ocean productivity associated with wildfire-derived nutrient and black carbon deposition in the Arctic Ocean in 2019-2021.
    Seok MW; Ko YH; Park KT; Kim TW
    Mar Pollut Bull; 2024 Apr; 201():116149. PubMed ID: 38364527
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [Comparative analysis of sea-ice diatom species composition in the seas of Russian Arctic].
    Il'iash L; Zhitina LS
    Zh Obshch Biol; 2009; 70(2):143-54. PubMed ID: 19425351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of a changing Arctic Ocean and climate for the biogeochemical cycling of dimethyl sulphide and carbon monoxide.
    Campen HI; Arévalo-Martínez DL; Artioli Y; Brown IJ; Kitidis V; Lessin G; Rees AP; Bange HW
    Ambio; 2022 Feb; 51(2):411-422. PubMed ID: 34480730
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Crustacea in Arctic and Antarctic sea ice: distribution, diet and life history strategies.
    Arndt CE; Swadling KM
    Adv Mar Biol; 2006; 51():197-315. PubMed ID: 16905428
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Retention of ice-associated amphipods: possible consequences for an ice-free Arctic Ocean.
    Berge J; Varpe O; Moline MA; Wold A; Renaud PE; Daase M; Falk-Petersen S
    Biol Lett; 2012 Dec; 8(6):1012-5. PubMed ID: 22977068
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sea ice decline drives biogeographical shifts of key Calanus species in the central Arctic Ocean.
    Ershova EA; Kosobokova KN; Banas NS; Ellingsen I; Niehoff B; Hildebrandt N; Hirche HJ
    Glob Chang Biol; 2021 May; 27(10):2128-2143. PubMed ID: 33605011
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Shallow methylmercury production in the marginal sea ice zone of the central Arctic Ocean.
    Heimbürger LE; Sonke JE; Cossa D; Point D; Lagane C; Laffont L; Galfond BT; Nicolaus M; Rabe B; van der Loeff MR
    Sci Rep; 2015 May; 5():10318. PubMed ID: 25993348
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mercury distribution and transport across the ocean-sea-ice-atmosphere interface in the Arctic Ocean.
    Chaulk A; Stern GA; Armstrong D; Barber DG; Wang F
    Environ Sci Technol; 2011 Mar; 45(5):1866-72. PubMed ID: 21288021
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Microalgal photophysiology and macronutrient distribution in summer sea ice in the Amundsen and Ross Seas, Antarctica.
    Torstensson A; Fransson A; Currie K; Wulff A; Chierici M
    PLoS One; 2018; 13(4):e0195587. PubMed ID: 29634756
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Does Arctic sea ice reduction foster shelf-basin exchange?
    Ivanov V; Watanabe E
    Ecol Appl; 2013 Dec; 23(8):1765-77. PubMed ID: 24555308
    [TBL] [Abstract][Full Text] [Related]  

  • 37. The Arctic Ocean's Beaufort Gyre.
    Timmermans ML; Toole JM
    Ann Rev Mar Sci; 2023 Jan; 15():223-248. PubMed ID: 35973719
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Episodic fresh surface waters in the Eocene Arctic Ocean.
    Brinkhuis H; Schouten S; Collinson ME; Sluijs A; Sinninghe Damsté JS; Dickens GR; Huber M; Cronin TM; Onodera J; Takahashi K; Bujak JP; Stein R; van der Burgh J; Eldrett JS; Harding IC; Lotter AF; Sangiorgi F; van Konijnenburg-van Cittert H; de Leeuw JW; Matthiessen J; Backman J; Moran K;
    Nature; 2006 Jun; 441(7093):606-9. PubMed ID: 16752440
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The interaction of ice and law in Arctic marine accessibility.
    Lynch AH; Norchi CH; Li X
    Proc Natl Acad Sci U S A; 2022 Jun; 119(26):e2202720119. PubMed ID: 35727968
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Changes in phytoplankton concentration now drive increased Arctic Ocean primary production.
    Lewis KM; van Dijken GL; Arrigo KR
    Science; 2020 Jul; 369(6500):198-202. PubMed ID: 32647002
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.