These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 36522326)

  • 1. Decoupling light absorption and carrier transport via heterogeneous doping in Ta
    Xiao Y; Fan Z; Nakabayashi M; Li Q; Zhou L; Wang Q; Li C; Shibata N; Domen K; Li Y
    Nat Commun; 2022 Dec; 13(1):7769. PubMed ID: 36522326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Interface engineering of Ta
    Fu J; Fan Z; Nakabayashi M; Ju H; Pastukhova N; Xiao Y; Feng C; Shibata N; Domen K; Li Y
    Nat Commun; 2022 Feb; 13(1):729. PubMed ID: 35132086
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Engineering band structuring
    Wang X; Zhang H; Feng C; Wang Y
    Chem Sci; 2024 Jan; 15(3):896-905. PubMed ID: 38239699
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thin film transfer for the fabrication of tantalum nitride photoelectrodes with controllable layered structures for water splitting.
    Wang C; Hisatomi T; Minegishi T; Nakabayashi M; Shibata N; Katayama M; Domen K
    Chem Sci; 2016 Sep; 7(9):5821-5826. PubMed ID: 30034721
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Gradient tantalum-doped hematite homojunction photoanode improves both photocurrents and turn-on voltage for solar water splitting.
    Zhang H; Li D; Byun WJ; Wang X; Shin TJ; Jeong HY; Han H; Li C; Lee JS
    Nat Commun; 2020 Sep; 11(1):4622. PubMed ID: 32934221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Highly efficient utilization of light and charge separation over a hematite photoanode achieved through a noncontact photonic crystal film for photoelectrochemical water splitting.
    Yu WY; Ma DK; Yang DP; Yang XG; Xu QL; Chen W; Huang S
    Phys Chem Chem Phys; 2020 Sep; 22(36):20202-20211. PubMed ID: 32966422
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoelectrochemical Solar Water Splitting: The Role of the Carbon Nanomaterials in Bismuth Vanadate Composite Photoanodes toward Efficient Charge Separation and Transport.
    Prakash J; Prasad U; Alexander R; Bahadur J; Dasgupta K; Kannan ANM
    Langmuir; 2019 Nov; 35(45):14492-14504. PubMed ID: 31618038
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Doping-Induced Amorphization, Vacancy, and Gradient Energy Band in SnS
    Meng L; Wang S; Cao F; Tian W; Long R; Li L
    Angew Chem Int Ed Engl; 2019 May; 58(20):6761-6765. PubMed ID: 30907040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Surface defect passivation of Ta
    Li F; Jian J; Xu Y; Liu W; Ye Q; Feng F; Li C; Jia L; Wang H
    J Chem Phys; 2020 Jul; 153(2):024705. PubMed ID: 32668911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Perovskite solar cell for photocatalytic water splitting with a TiO
    Roy S; Botte GG
    RSC Adv; 2018 Jan; 8(10):5388-5394. PubMed ID: 35542422
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface-Modified Ta
    Kim YW; Cha S; Kwak I; Kwon IS; Park K; Jung CS; Cha EH; Park J
    ACS Appl Mater Interfaces; 2017 Oct; 9(42):36715-36722. PubMed ID: 28976733
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Carrier dynamics of a visible-light-responsive Ta3N5 photoanode for water oxidation.
    Ziani A; Nurlaela E; Dhawale DS; Silva DA; Alarousu E; Mohammed OF; Takanabe K
    Phys Chem Chem Phys; 2015 Jan; 17(4):2670-7. PubMed ID: 25503748
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An investigation on the role of W doping in BiVO
    Zhao X; Hu J; Chen S; Chen Z
    Phys Chem Chem Phys; 2018 May; 20(19):13637-13645. PubMed ID: 29737988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ge-mediated modification in Ta3N5 photoelectrodes with enhanced charge transport for solar water splitting.
    Feng J; Cao D; Wang Z; Luo W; Wang J; Li Z; Zou Z
    Chemistry; 2014 Dec; 20(49):16384-90. PubMed ID: 25314682
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bridging the transport pathway of charge carriers in a Ta3N5 nanotube array photoanode for solar water splitting.
    Zhang P; Wang T; Zhang J; Chang X; Gong J
    Nanoscale; 2015 Aug; 7(31):13153-8. PubMed ID: 26061973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient water-splitting device based on a bismuth vanadate photoanode and thin-film silicon solar cells.
    Han L; Abdi FF; van de Krol R; Liu R; Huang Z; Lewerenz HJ; Dam B; Zeman M; Smets AH
    ChemSusChem; 2014 Oct; 7(10):2832-8. PubMed ID: 25138735
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ag-doped BiVO
    Soltani T; Lee BK
    Sci Total Environ; 2020 Sep; 736():138640. PubMed ID: 32487354
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting.
    Shen S; Zhou J; Dong CL; Hu Y; Tseng EN; Guo P; Guo L; Mao SS
    Sci Rep; 2014 Oct; 4():6627. PubMed ID: 25316219
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Physicochemical insights into semiconductor properties of a semitransparent tantalum nitride photoanode for solar water splitting.
    Higashi T; Nishiyama H; Pihosh Y; Wakishima K; Kawase Y; Sasaki Y; Nagaoka A; Yoshino K; Takanabe K; Domen K
    Phys Chem Chem Phys; 2023 Aug; 25(30):20737-20748. PubMed ID: 37490272
    [TBL] [Abstract][Full Text] [Related]  

  • 20. CdS nanoparticles sensitization of Al-doped ZnO nanorod array thin film with hydrogen treatment as an ITO/FTO-free photoanode for solar water splitting.
    Hsu CH; Chen DH
    Nanoscale Res Lett; 2012 Oct; 7(1):593. PubMed ID: 23098050
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.