These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36522344)

  • 21. Radiological model based on the standard magnetic resonance sequences for detecting methylguanine methyltransferase methylation in glioma using texture analysis.
    Huang WY; Wen LH; Wu G; Pang PP; Ogbuji R; Zhang CC; Chen F; Zhao JN
    Cancer Sci; 2021 Jul; 112(7):2835-2844. PubMed ID: 33932065
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Non-invasive prediction of p53 and Ki-67 labelling indices and O-6-methylguanine-DNA methyltransferase promoter methylation status in adult patients with isocitrate dehydrogenase wild-type glioblastomas using diffusion-weighted imaging and dynamic susceptibility contrast-enhanced perfusion-weighted imaging combined with conventional MRI.
    Xing Z; Huang W; Su Y; Yang X; Zhou X; Cao D
    Clin Radiol; 2022 Aug; 77(8):e576-e584. PubMed ID: 35469666
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Automated machine learning to predict the co-occurrence of isocitrate dehydrogenase mutations and O
    Zhang S; Sun H; Su X; Yang X; Wang W; Wan X; Tan Q; Chen N; Yue Q; Gong Q
    J Magn Reson Imaging; 2021 Jul; 54(1):197-205. PubMed ID: 33393131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. State of Radiomics in Glioblastoma.
    Taha B; Boley D; Sun J; Chen CC
    Neurosurgery; 2021 Jul; 89(2):177-184. PubMed ID: 33913492
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Radiomics and MGMT promoter methylation for prognostication of newly diagnosed glioblastoma.
    Sasaki T; Kinoshita M; Fujita K; Fukai J; Hayashi N; Uematsu Y; Okita Y; Nonaka M; Moriuchi S; Uda T; Tsuyuguchi N; Arita H; Mori K; Ishibashi K; Takano K; Nishida N; Shofuda T; Yoshioka E; Kanematsu D; Kodama Y; Mano M; Nakao N; Kanemura Y
    Sci Rep; 2019 Oct; 9(1):14435. PubMed ID: 31594994
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Response Assessment in Neuro-Oncology criteria, contrast enhancement and perfusion MRI for assessing progression in glioblastoma.
    Tensaouti F; Khalifa J; Lusque A; Plas B; Lotterie JA; Berry I; Laprie A; Cohen-Jonathan Moyal E; Lubrano V
    Neuroradiology; 2017 Oct; 59(10):1013-1020. PubMed ID: 28842741
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Different diagnostic values of imaging parameters to predict pseudoprogression in glioblastoma subgroups stratified by MGMT promoter methylation.
    Yoon RG; Kim HS; Paik W; Shim WH; Kim SJ; Kim JH
    Eur Radiol; 2017 Jan; 27(1):255-266. PubMed ID: 27048531
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MRI texture features as biomarkers to predict MGMT methylation status in glioblastomas.
    Korfiatis P; Kline TL; Coufalova L; Lachance DH; Parney IF; Carter RE; Buckner JC; Erickson BJ
    Med Phys; 2016 Jun; 43(6):2835-2844. PubMed ID: 27277032
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Deep-learning-based synthesis of post-contrast T1-weighted MRI for tumour response assessment in neuro-oncology: a multicentre, retrospective cohort study.
    Jayachandran Preetha C; Meredig H; Brugnara G; Mahmutoglu MA; Foltyn M; Isensee F; Kessler T; Pflüger I; Schell M; Neuberger U; Petersen J; Wick A; Heiland S; Debus J; Platten M; Idbaih A; Brandes AA; Winkler F; van den Bent MJ; Nabors B; Stupp R; Maier-Hein KH; Gorlia T; Tonn JC; Weller M; Wick W; Bendszus M; Vollmuth P
    Lancet Digit Health; 2021 Dec; 3(12):e784-e794. PubMed ID: 34688602
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Radiomic subtyping improves disease stratification beyond key molecular, clinical, and standard imaging characteristics in patients with glioblastoma.
    Kickingereder P; Neuberger U; Bonekamp D; Piechotta PL; Götz M; Wick A; Sill M; Kratz A; Shinohara RT; Jones DTW; Radbruch A; Muschelli J; Unterberg A; Debus J; Schlemmer HP; Herold-Mende C; Pfister S; von Deimling A; Wick W; Capper D; Maier-Hein KH; Bendszus M
    Neuro Oncol; 2018 May; 20(6):848-857. PubMed ID: 29036412
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Treatment-associated imaging changes in newly diagnosed MGMT promoter-methylated glioblastoma undergoing chemoradiation with or without cilengitide.
    Flies CM; Friedrich M; Lohmann P; van Garderen KA; Smits M; Tonn JC; Weller M; Galldiks N; Snijders TJ
    Neuro Oncol; 2024 May; 26(5):902-910. PubMed ID: 38219019
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Fused deep learning paradigm for the prediction of o6-methylguanine-DNA methyltransferase genotype in glioblastoma patients: A neuro-oncological investigation.
    Saxena S; Jena B; Mohapatra B; Gupta N; Kalra M; Scartozzi M; Saba L; Suri JS
    Comput Biol Med; 2023 Feb; 153():106492. PubMed ID: 36621191
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Radiomic analysis of multi-contrast brain MRI for the prediction of survival in patients with glioblastoma multiforme.
    Chaddad A; Desrosiers C; Toews M
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():4035-4038. PubMed ID: 28325002
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Automatic Prediction of MGMT Status in Glioblastoma via Deep Learning-Based MR Image Analysis.
    Chen X; Zeng M; Tong Y; Zhang T; Fu Y; Li H; Zhang Z; Cheng Z; Xu X; Yang R; Liu Z; Wei X; Jiang X
    Biomed Res Int; 2020; 2020():9258649. PubMed ID: 33029531
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparison of 2D (RANO) and volumetric methods for assessment of recurrent glioblastoma treated with bevacizumab-a report from the BELOB trial.
    Gahrmann R; van den Bent M; van der Holt B; Vernhout RM; Taal W; Vos M; de Groot JC; Beerepoot LV; Buter J; Flach ZH; Hanse M; Jasperse B; Smits M
    Neuro Oncol; 2017 Jun; 19(6):853-861. PubMed ID: 28204639
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Radiomics may increase the prognostic value for survival in glioblastoma patients when combined with conventional clinical and genetic prognostic models.
    Choi Y; Nam Y; Jang J; Shin NY; Lee YS; Ahn KJ; Kim BS; Park JS; Jeon SS; Hong YG
    Eur Radiol; 2021 Apr; 31(4):2084-2093. PubMed ID: 33006658
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural and advanced imaging in predicting MGMT promoter methylation of primary glioblastoma: a region of interest based analysis.
    Han Y; Yan LF; Wang XB; Sun YZ; Zhang X; Liu ZC; Nan HY; Hu YC; Yang Y; Zhang J; Yu Y; Sun Q; Tian Q; Hu B; Xiao G; Wang W; Cui GB
    BMC Cancer; 2018 Feb; 18(1):215. PubMed ID: 29467012
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Comparison of Three Different Deep Learning-Based Models to Predict the MGMT Promoter Methylation Status in Glioblastoma Using Brain MRI.
    Faghani S; Khosravi B; Moassefi M; Conte GM; Erickson BJ
    J Digit Imaging; 2023 Jun; 36(3):837-846. PubMed ID: 36604366
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Glioblastoma and Solitary Brain Metastasis: Differentiation by Integrating Demographic-MRI and Deep-Learning Radiomics Signatures.
    Zhang Y; Zhang H; Zhang H; Ouyang Y; Su R; Yang W; Huang B
    J Magn Reson Imaging; 2024 Sep; 60(3):909-920. PubMed ID: 37955154
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multiregional radiomics profiling from multiparametric MRI: Identifying an imaging predictor of IDH1 mutation status in glioblastoma.
    Li ZC; Bai H; Sun Q; Zhao Y; Lv Y; Zhou J; Liang C; Chen Y; Liang D; Zheng H
    Cancer Med; 2018 Dec; 7(12):5999-6009. PubMed ID: 30426720
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.