BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

181 related articles for article (PubMed ID: 36522364)

  • 1. Texture recognition based on multi-sensory integration of proprioceptive and tactile signals.
    Rostamian B; Koolani M; Abdollahzade P; Lankarany M; Falotico E; Amiri M; V Thakor N
    Sci Rep; 2022 Dec; 12(1):21690. PubMed ID: 36522364
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Texture Discrimination with a Soft Biomimetic Finger Using a Flexible Neuromorphic Tactile Sensor Array That Provides Sensory Feedback.
    Sankar S; Balamurugan D; Brown A; Ding K; Xu X; Low JH; Yeow CH; Thakor N
    Soft Robot; 2021 Oct; 8(5):577-587. PubMed ID: 32976080
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Artificial SA-I and RA-I afferents for tactile sensing of ridges and gratings.
    Pestell N; Griffith T; Lepora NF
    J R Soc Interface; 2022 Apr; 19(189):20210822. PubMed ID: 35382575
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The role of fingerprints in the coding of tactile information probed with a biomimetic sensor.
    Scheibert J; Leurent S; Prevost A; Debrégeas G
    Science; 2009 Mar; 323(5920):1503-6. PubMed ID: 19179493
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sharpness recognition based on synergy between bio-inspired nociceptors and tactile mechanoreceptors.
    Parvizi-Fard A; Salimi-Nezhad N; Amiri M; Falotico E; Laschi C
    Sci Rep; 2021 Jan; 11(1):2109. PubMed ID: 33483529
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Information about contact force and surface texture is mixed in the firing rates of cutaneous afferent neurons.
    Liu M; Batista A; Bensmaia S; Weber DJ
    J Neurophysiol; 2021 Feb; 125(2):496-508. PubMed ID: 33326349
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An Extreme Learning Machine-Based Neuromorphic Tactile Sensing System for Texture Recognition.
    Rasouli M; Chen Y; Basu A; Kukreja SL; Thakor NV
    IEEE Trans Biomed Circuits Syst; 2018 Apr; 12(2):313-325. PubMed ID: 29570059
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Neuromorphic Artificial Touch for Categorization of Naturalistic Textures.
    Rongala UB; Mazzoni A; Oddo CM
    IEEE Trans Neural Netw Learn Syst; 2017 Apr; 28(4):819-829. PubMed ID: 26372658
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Anatomy of the sense of touch in sea otters: Cutaneous mechanoreceptors and structural features of glabrous skin.
    Strobel SM; Miller MA; Murray MJ; Reichmuth C
    Anat Rec (Hoboken); 2022 Mar; 305(3):535-555. PubMed ID: 34425043
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Slowly-adapting type II afferents contribute to conscious touch sensation in humans: Evidence from single unit intraneural microstimulation.
    Watkins RH; Durao de Carvalho Amante M; Backlund Wasling H; Wessberg J; Ackerley R
    J Physiol; 2022 Jun; 600(12):2939-2952. PubMed ID: 35569041
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulation of motion on the skin. I. Receptive fields and temporal frequency coding by cutaneous mechanoreceptors of OPTACON pulses delivered to the hand.
    Gardner EP; Palmer CI
    J Neurophysiol; 1989 Dec; 62(6):1410-36. PubMed ID: 2600632
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Biomimetic Circuit for Electronic Skin With Application in Hand Prosthesis.
    Rahiminejad E; Parvizi-Fard A; Iskarous MM; Thakor NV; Amiri M
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():2333-2344. PubMed ID: 34673491
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Physiological characteristics of low-threshold mechanoreceptors in joints, muscle and skin in human subjects.
    Macefield VG
    Clin Exp Pharmacol Physiol; 2005; 32(1-2):135-44. PubMed ID: 15730450
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial SA-I, RA-I and RA-II/vibrotactile afferents for tactile sensing of texture.
    Pestell N; Lepora NF
    J R Soc Interface; 2022 Apr; 19(189):20210603. PubMed ID: 35382572
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution imaging of skin deformation shows that afferents from human fingertips signal slip onset.
    Delhaye BP; Jarocka E; Barrea A; Thonnard JL; Edin B; Lefèvre P
    Elife; 2021 Apr; 10():. PubMed ID: 33884951
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tactile sensation in birds: Physiological insights from avian mechanoreceptors.
    Ziolkowski LH; Gracheva EO; Bagriantsev SN
    Curr Opin Neurobiol; 2022 Jun; 74():102548. PubMed ID: 35489134
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Encoding/decoding of first and second order tactile afferents in a neurorobotic application.
    Bologna LL; Pinoteau J; Brasselet R; Maggiali M; Arleo A
    J Physiol Paris; 2011; 105(1-3):25-35. PubMed ID: 21911056
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Speed invariance of tactile texture perception.
    Boundy-Singer ZM; Saal HP; Bensmaia SJ
    J Neurophysiol; 2017 Oct; 118(4):2371-2377. PubMed ID: 28724777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Skin-Inspired Artificial Mechanoreceptor for Tactile Enhancement and Integration.
    Li F; Wang R; Song C; Zhao M; Ren H; Wang S; Liang K; Li D; Ma X; Zhu B; Wang H; Hao Y
    ACS Nano; 2021 Oct; 15(10):16422-16431. PubMed ID: 34597014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimal delineation of single C-tactile and C-nociceptive afferents in humans by latency slowing.
    Watkins RH; Wessberg J; Backlund Wasling H; Dunham JP; Olausson H; Johnson RD; Ackerley R
    J Neurophysiol; 2017 Apr; 117(4):1608-1614. PubMed ID: 28123010
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.