These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
200 related articles for article (PubMed ID: 36522642)
1. Unravelling the palaeobiogeographical history of the living fossil genus Rehderodendron (Styracaceae) with fossil and extant pollen and fruit data. Hofmann CC; Zhao WY BMC Ecol Evol; 2022 Dec; 22(1):145. PubMed ID: 36522642 [TBL] [Abstract][Full Text] [Related]
2. Fruits of Koelreuteria (Sapindaceae) from the Cenozoic throughout the northern hemisphere: their ecological, evolutionary, and biogeographic implications. Wang Q; Manchester SR; Gregor HJ; Shen S; Li ZY Am J Bot; 2013 Feb; 100(2):422-49. PubMed ID: 23360930 [TBL] [Abstract][Full Text] [Related]
3. Hedycarya macrofossils and associated Planarpollenites pollen from the early Miocene of New Zealand. Conran JG; Bannister JM; Mildenhall DC; Lee DE Am J Bot; 2016 May; 103(5):938-56. PubMed ID: 27208361 [TBL] [Abstract][Full Text] [Related]
4. Alnus subgenus Alnus in the Eocene of western North America based on leaves, associated catkins, pollen, and fruits. Liu X; Manchester SR; Jin J Am J Bot; 2014 Nov; 101(11):1925-43. PubMed ID: 25366858 [TBL] [Abstract][Full Text] [Related]
5. Biogeography in deep time - What do phylogenetics, geology, and paleoclimate tell us about early platyrrhine evolution? Kay RF Mol Phylogenet Evol; 2015 Jan; 82 Pt B():358-74. PubMed ID: 24333920 [TBL] [Abstract][Full Text] [Related]
6. Phylogeny of extant and fossil Juglandaceae inferred from the integration of molecular and morphological data sets. Manos PS; Soltis PS; Soltis DE; Manchester SR; Oh SH; Bell CD; Dilcher DL; Stone DE Syst Biol; 2007 Jun; 56(3):412-30. PubMed ID: 17558964 [TBL] [Abstract][Full Text] [Related]
7. New Fagaceous pollen taxa from the Miocene Søby flora of Denmark and their biogeographic implications. Denk T; Bouchal JM Am J Bot; 2021 Aug; 108(8):1500-1524. PubMed ID: 34458984 [TBL] [Abstract][Full Text] [Related]
8. Leaf fossils of Luzuriaga and a monocot flower with in situ pollen of Liliacidites contortus Mildenh. & Bannister sp. nov. (Alstroemeriaceae) from the Early Miocene. Conran JG; Bannister JM; Mildenhall DC; Lee DE; Chacón J; Renner SS Am J Bot; 2014 Jan; 101(1):141-55. PubMed ID: 24425789 [TBL] [Abstract][Full Text] [Related]
9. Mass extinction in tetraodontiform fishes linked to the Palaeocene-Eocene thermal maximum. Arcila D; Tyler JC Proc Biol Sci; 2017 Nov; 284(1866):. PubMed ID: 29118135 [TBL] [Abstract][Full Text] [Related]
10. Two fossil species of Tarran M; Wilson PG; Macphail MK; Jordan GJ; Hill RS Am J Bot; 2017 Jun; 104(6):891-904. PubMed ID: 28634257 [TBL] [Abstract][Full Text] [Related]
11. Winged fruits and associated leaves of Shorea (Dipterocarpaceae) from the Late Eocene of South China and their phytogeographic and paleoclimatic implications. Feng X; Tang B; Kodrul TM; Jin J Am J Bot; 2013 Mar; 100(3):574-81. PubMed ID: 23445828 [TBL] [Abstract][Full Text] [Related]
12. Evidence of late Palaeocene-early Eocene equatorial rain forest refugia in southern Western Ghats, India. Prasad V; Farooqui A; Tripathi SK; Garg R; Thakur B J Biosci; 2009 Nov; 34(5):777-97. PubMed ID: 20009271 [TBL] [Abstract][Full Text] [Related]
13. A New Clue for the Late Eocene Freshwater Ecosystem of Central China Evidenced by New Fossils of Han Z; Jia H; Meng X; Ferguson DK; Luo M; Liu P; Wang J; Quan C Biology (Basel); 2022 Oct; 11(10):. PubMed ID: 36290345 [TBL] [Abstract][Full Text] [Related]
14. Liquidambar maomingensis sp. nov. (Altingiaceae) from the late Eocene of South China. Maslova NP; Kodrul TM; Song Y; Volkova LD; Jin J Am J Bot; 2015 Aug; 102(8):1356-70. PubMed ID: 26290558 [TBL] [Abstract][Full Text] [Related]
15. Pliocene seeds of Passiflora subgenus Decaloba (Gray Fossil Site, Tennessee) and the impact of the fossil record on understanding the diversification and biogeography of Passiflora. Hermsen EJ Am J Bot; 2023 Mar; 110(3):1-16. PubMed ID: 36735676 [TBL] [Abstract][Full Text] [Related]
16. New Biogeographic insight into Bauhinia s.l. (Leguminosae): integration from fossil records and molecular analyses. Meng HH; Jacques FM; Su T; Huang YJ; Zhang ST; Ma HJ; Zhou ZK BMC Evol Biol; 2014 Aug; 14():181. PubMed ID: 25288346 [TBL] [Abstract][Full Text] [Related]
17. Fossil berries reveal global radiation of the nightshade family by the early Cenozoic. Deanna R; Martínez C; Manchester S; Wilf P; Campos A; Knapp S; Chiarini FE; Barboza GE; Bernardello G; Sauquet H; Dean E; Orejuela A; Smith SD New Phytol; 2023 Jun; 238(6):2685-2697. PubMed ID: 36960534 [TBL] [Abstract][Full Text] [Related]
18. Fossil flowers from the early Palaeocene of Patagonia, Argentina, with affinity to Schizomerieae (Cunoniaceae). Jud NA; Gandolfo MA; Iglesias A; Wilf P Ann Bot; 2018 Mar; 121(3):431-442. PubMed ID: 29309506 [TBL] [Abstract][Full Text] [Related]
19. An Akania (Akaniaceae) inflorescence with associated pollen from the early Miocene of New Zealand. Conran JG; Kaulfuss U; Bannister JM; Mildenhall DC; Lee DE Am J Bot; 2019 Feb; 106(2):292-302. PubMed ID: 30791095 [TBL] [Abstract][Full Text] [Related]
20. Joint Phylogenetic Estimation of Geographic Movements and Biome Shifts during the Global Diversification of Viburnum. Landis MJ; Eaton DAR; Clement WL; Park B; Spriggs EL; Sweeney PW; Edwards EJ; Donoghue MJ Syst Biol; 2021 Jan; 70(1):67-85. PubMed ID: 32267945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]