These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 36522875)

  • 1. Method for parallelism measurement of geometrical waveguides based on the combination of an autocollimator and a testing telescope.
    Yang Y; Zhao M; Zheng Y; Huang Y
    Opt Express; 2022 Dec; 30(25):44518-44532. PubMed ID: 36522875
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Stray light and tolerance analysis of an ultrathin waveguide display.
    Wang Q; Cheng D; Hou Q; Hu Y; Wang Y
    Appl Opt; 2015 Oct; 54(28):8354-62. PubMed ID: 26479609
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Design method of an ultra-thin two-dimensional geometrical waveguide near-eye display based on forward-ray-tracing and maximum FOV analysis.
    Ruan N; Shi F; Tian Y; Xing P; Zhang W; Qiao S
    Opt Express; 2023 Oct; 31(21):33799-33814. PubMed ID: 37859152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Design method of a wide-angle AR display with a single-layer two-dimensional pupil expansion geometrical waveguide.
    Cheng D; Wang Q; Wei L; Wang X; Zhou L; Hou Q; Duan J; Yang T; Wang Y
    Appl Opt; 2022 Jul; 61(19):5813-5822. PubMed ID: 36255817
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Research on a surface-relief optical waveguide augmented reality display device.
    Zhang W; Wang Z; Xu J
    Appl Opt; 2018 May; 57(14):3720-3729. PubMed ID: 29791343
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design of an ultra-thin, wide-angle, stray-light-free near-eye display with a dual-layer geometrical waveguide.
    Wang Q; Cheng D; Hou Q; Gu L; Wang Y
    Opt Express; 2020 Nov; 28(23):35376-35394. PubMed ID: 33182985
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, analysis and optimization of a waveguide-type near-eye display using a pin-mirror array and a concaved reflector.
    Zhang Q; Piao Y; Ma S; Liu Y; Wang Y; Song W
    Opt Express; 2022 Aug; 30(18):33208-33221. PubMed ID: 36242366
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Design of an ultra-thin near-eye display with geometrical waveguide and freeform optics.
    Cheng D; Wang Y; Xu C; Song W; Jin G
    Opt Express; 2014 Aug; 22(17):20705-19. PubMed ID: 25321274
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Metasurface wavefront control for high-performance user-natural augmented reality waveguide glasses.
    Boo H; Lee YS; Yang H; Matthews B; Lee TG; Wong CW
    Sci Rep; 2022 Apr; 12(1):5832. PubMed ID: 35388053
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Design of a two-dimensional stray-light-free geometrical waveguide head-up display.
    Gu L; Cheng D; Wang Q; Hou Q; Wang Y
    Appl Opt; 2018 Nov; 57(31):9246-9256. PubMed ID: 30461965
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Self-calibration strategies for reducing systematic slope measurement errors of autocollimators in deflectometric profilometry.
    Geckeler RD; Just A; Krause M; Schnabel O; Lacey I; English D; Yashchuk VV
    J Synchrotron Radiat; 2024 Jul; 31(Pt 4):670-680. PubMed ID: 38838166
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-stray-light gratings fabricated with scanning exposure method based on Lloyd's mirror for a high-contrast near-eye display in augmented reality.
    Xu C; Zhao Y; Zeng L
    Appl Opt; 2022 Jul; 61(19):5626-5632. PubMed ID: 36255791
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Semi-Kinematic Coupling Design and Analysis for Giant Steerable Science Mirror Prototype of Thirty Meter Telescope.
    Zhao H; Chen W; An Q; Guo P; Yang F
    Sensors (Basel); 2024 Jun; 24(11):. PubMed ID: 38894419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Wide-field off-axis telescope for the Mesospheric Airglow/Aerosol Tomography Spectroscopy satellite.
    Hammar A; Park W; Chang S; Pak S; Emrich A; Stake J
    Appl Opt; 2019 Feb; 58(6):1393-1399. PubMed ID: 30874023
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complete power concentration into a single waveguide in large-scale waveguide array lenses.
    Catrysse PB; Liu V; Fan S
    Sci Rep; 2014 Oct; 4():6635. PubMed ID: 25319203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Development of a machine for automatically measuring static/dynamic running parallelism in linear guideways.
    Hsieh TH; Huang HL; Jywe WY; Liu CH
    Rev Sci Instrum; 2014 Mar; 85(3):035115. PubMed ID: 24689628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Accurate photonic waveguide characterization using an arrayed waveguide structure.
    Gehl M; Boynton N; Dallo C; Pomerene A; Starbuck A; Hood D; Trotter DC; Lentine A; DeRose CT
    Opt Express; 2018 Jul; 26(14):18082-18095. PubMed ID: 30114086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Design of a uniform-illumination two-dimensional waveguide head-up display with thin plate compensator.
    Gu L; Cheng D; Wang Q; Hou Q; Wang S; Yang T; Wang Y
    Opt Express; 2019 Apr; 27(9):12692-12709. PubMed ID: 31052807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A three-dimensional small angle measurement system based on autocollimation method.
    Ren W; Cui J; Tan J
    Rev Sci Instrum; 2022 May; 93(5):055102. PubMed ID: 35649758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long range hybrid tube-wedge plasmonic waveguide with extreme light confinement and good fabrication error tolerance.
    Ding L; Qin J; Xu K; Wang L
    Opt Express; 2016 Feb; 24(4):3432-40. PubMed ID: 26907002
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.