These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 36522982)

  • 1. Thermally tunable broadband metamaterial absorbers based on ionic liquids.
    Yang F; Zhang C; Zhang A; Zhu X; Xu H; Wang D
    Opt Express; 2022 Dec; 30(25):45883-45894. PubMed ID: 36522982
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermally Tunable Ultra-wideband Metamaterial Absorbers based on Three-dimensional Water-substrate construction.
    Shen Y; Zhang J; Pang Y; Zheng L; Wang J; Ma H; Qu S
    Sci Rep; 2018 Mar; 8(1):4423. PubMed ID: 29535316
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Demonstration of Thermally Tunable Multi-Band and Ultra-Broadband Metamaterial Absorbers Maintaining High Efficiency during Tuning Process.
    Mou N; Tang B; Li J; Zhang Y; Dong H; Zhang L
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reverse design of metamaterial absorbers based on an equivalent circuit.
    Wang Y; Xuan X; Wu S; Zhu L; Zhu J; Shen X; Zhang Z; Hu C
    Phys Chem Chem Phys; 2022 Aug; 24(34):20390-20399. PubMed ID: 35983852
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Switchable dual-band to broadband terahertz metamaterial absorber incorporating a VO
    Lv T; Dong G; Qin C; Qu J; Lv B; Li W; Zhu Z; Li Y; Guan C; Shi J
    Opt Express; 2021 Feb; 29(4):5437-5447. PubMed ID: 33726080
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical study of an ultra-broadband near-perfect solar absorber in the visible and near-infrared region.
    Wu D; Liu C; Liu Y; Yu L; Yu Z; Chen L; Ma R; Ye H
    Opt Lett; 2017 Feb; 42(3):450-453. PubMed ID: 28146499
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphene-Based THz Absorber with a Broad Band for Tuning the Absorption Rate and a Narrow Band for Tuning the Absorbing Frequency.
    Zhou Q; Liu P; Liu C; Zhou Y; Zha S
    Nanomaterials (Basel); 2019 Aug; 9(8):. PubMed ID: 31398824
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An Ultrathin Tunable Metamaterial Absorber for Lower Microwave Band Based on Magnetic Nanomaterial.
    Ning J; Chen K; Zhao W; Zhao J; Jiang T; Feng Y
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807970
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intensity tunable infrared broadband absorbers based on VO2 phase transition using planar layered thin films.
    Kocer H; Butun S; Palacios E; Liu Z; Tongay S; Fu D; Wang K; Wu J; Aydin K
    Sci Rep; 2015 Aug; 5():13384. PubMed ID: 26294085
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermally tunable polarization-insensitive ultra-broadband terahertz metamaterial absorber based on the coupled toroidal dipole modes.
    Pan H; Zhang H
    Opt Express; 2021 Jun; 29(12):18081-18094. PubMed ID: 34154075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Switchable broadband metamaterial absorber/reflector based on vanadium dioxide rings.
    Cao B; Li Y; Liu X; Fei H; Zhang M; Yang Y
    Appl Opt; 2020 Sep; 59(27):8111-8117. PubMed ID: 32976389
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and optimization of broadband metamaterial absorber based on manganese for visible applications.
    Sayed SI; Mahmoud KR; Mubarak RI
    Sci Rep; 2023 Jul; 13(1):11937. PubMed ID: 37488131
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Focusing on the Development and Current Status of Metamaterial Absorber by Bibliometric Analysis.
    Li X; Li Q; Wu L; Xu Z; Yao J
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984166
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Tunable terahertz metamaterial absorber based on Dirac semimetal films.
    Wang T; Cao M; Zhang H; Zhang Y
    Appl Opt; 2018 Nov; 57(32):9555-9561. PubMed ID: 30461735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Dual band metamaterial perfect absorber based on artificial dielectric "molecules".
    Liu X; Lan C; Li B; Zhao Q; Zhou J
    Sci Rep; 2016 Jul; 6():28906. PubMed ID: 27406699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dual broadband metamaterial absorber.
    Kim YJ; Yoo YJ; Kim KW; Rhee JY; Kim YH; Lee Y
    Opt Express; 2015 Feb; 23(4):3861-8. PubMed ID: 25836425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. All-Dielectric Terahertz Plasmonic Metamaterial Absorbers and High-Sensitivity Sensing.
    Wang Y; Zhu D; Cui Z; Hou L; Lin L; Qu F; Liu X; Nie P
    ACS Omega; 2019 Nov; 4(20):18645-18652. PubMed ID: 31737824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Ultra-thin and broadband tunable metamaterial graphene absorber.
    Xiong H; Wu YB; Dong J; Tang MC; Jiang YN; Zeng XP
    Opt Express; 2018 Jan; 26(2):1681-1688. PubMed ID: 29402039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multi-mode plasmonic resonance broadband LWIR metamaterial absorber based on lossy metal ring.
    Qin Z; Shi X; Yang F; Hou E; Meng D; Sun C; Dai R; Zhang S; Liu H; Xu H; Liang Z
    Opt Express; 2022 Jan; 30(1):473-483. PubMed ID: 35201223
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable broadband all-silicon terahertz absorber based on a simple metamaterial structure.
    Lang T; Shen T; Wang G; Shen C
    Appl Opt; 2020 Jul; 59(21):6265-6270. PubMed ID: 32749287
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.