These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 36523107)

  • 1. Design of a confocal dispersion objective lens based on the GRIN lens.
    Li C; Li K; Liu J; Lv Z; Li G; Li D
    Opt Express; 2022 Nov; 30(24):44290-44299. PubMed ID: 36523107
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photopolymer-based coaxial holographic lens for spectral confocal displacement and morphology measurement.
    Liu H; Wang B; Wang R; Wang M; Yu D; Wang W
    Opt Lett; 2019 Jul; 44(14):3554-3557. PubMed ID: 31305571
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Contribution of the gradient refractive index and shape to the crystalline lens spherical aberration and astigmatism.
    Birkenfeld J; de Castro A; Ortiz S; Pascual D; Marcos S
    Vision Res; 2013 Jun; 86():27-34. PubMed ID: 23597582
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Geometry-invariant GRIN lens: iso-dispersive contours.
    Bahrami M; Goncharov AV
    Biomed Opt Express; 2012 Jul; 3(7):1684-700. PubMed ID: 22808438
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature effects on axial dispersion in a photopolymer-based holographic lens.
    Liu H; Sun G; Li M; Li L; Zhang J; Tai H; Yu D
    Appl Opt; 2023 Feb; 62(6):1475-1482. PubMed ID: 36821307
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Expansion of axial dispersion in a photopolymer-based holographic lens and its improvement for measuring displacement.
    Liu Y; Liu H; Wang B; Wei M; Li L; Wang W
    Appl Opt; 2020 Sep; 59(27):8279-8284. PubMed ID: 32976413
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystalline lens gradient refractive index distribution in the guinea pig.
    de Castro A; Martinez-Enriquez E; Perez-Merino P; Velasco-Ocaña M; Revuelta L; McFadden S; Marcos S
    Ophthalmic Physiol Opt; 2020 May; 40(3):308-315. PubMed ID: 32338776
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution of shape and gradient refractive index to the spherical aberration of isolated human lenses.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2014 Apr; 55(4):2599-607. PubMed ID: 24677101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Accommodating volume-constant age-dependent optical (AVOCADO) model of the crystalline GRIN lens.
    Sheil CJ; Goncharov AV
    Biomed Opt Express; 2016 May; 7(5):1985-99. PubMed ID: 27231637
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of shape and gradient refractive index in the accommodative changes of spherical aberration in nonhuman primate crystalline lenses.
    de Castro A; Birkenfeld J; Maceo B; Manns F; Arrieta E; Parel JM; Marcos S
    Invest Ophthalmol Vis Sci; 2013 Sep; 54(9):6197-207. PubMed ID: 23927893
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GRIN lens rod based probe for endoscopic spectral domain optical coherence tomography with fast dynamic focus tracking.
    Xie T; Guo S; Chen Z; Mukai D; Brenner M
    Opt Express; 2006 Apr; 14(8):3238-46. PubMed ID: 19516465
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astigmatism of the Ex Vivo Human Lens: Surface and Gradient Refractive Index Age-Dependent Contributions.
    Birkenfeld J; de Castro A; Marcos S
    Invest Ophthalmol Vis Sci; 2015 Aug; 56(9):5067-73. PubMed ID: 26241395
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gradient refractive index square lenses. II. Imaging.
    Liu A; Lv H; Tong J; Yi X; Li Q; Wang X; Ding Y
    J Opt Soc Am A Opt Image Sci Vis; 2009 Dec; 26(12):2512-4. PubMed ID: 19956317
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Refractive index redistribution with accommodation based on finite volume-constant age-dependent mechanical modeling.
    Jiang MS; Xu XL; Yang T; Zhang XD; Li F
    Vision Res; 2019 Jul; 160():52-59. PubMed ID: 31095964
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Three-dimensional reconstruction of the crystalline lens gradient index distribution from OCT imaging.
    de Castro A; Ortiz S; Gambra E; Siedlecki D; Marcos S
    Opt Express; 2010 Oct; 18(21):21905-17. PubMed ID: 20941090
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing a microspectrophotometer to measure the dependence of broadband refractive indices on Ge-doped concentrations in GRIN rods.
    Weng CJ; Hsu KY; Lee CY; Chen YF
    Opt Express; 2015 Nov; 23(24):30815-20. PubMed ID: 26698714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. High Refractive Index GRIN Lens for IR Optics.
    Kang Y; Wang J; Zhao Y; Zhao X; Tao H; Xu Y
    Materials (Basel); 2023 Mar; 16(7):. PubMed ID: 37048860
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Achromatic GRIN singlet lens design.
    Flynn RA; Fleet EF; Beadie G; Shirk JS
    Opt Express; 2013 Feb; 21(4):4970-8. PubMed ID: 23482029
    [TBL] [Abstract][Full Text] [Related]  

  • 19. New interfacial-gel copolymerization technique for steric GRIN polymer optical waveguides and lens arrays.
    Koike Y; Takezawa Y; Ohtsuka Y
    Appl Opt; 1988 Feb; 27(3):486-91. PubMed ID: 20523627
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tunable two-dimensional liquid gradient refractive index (L-GRIN) lens for variable light focusing.
    Huang H; Mao X; Lin SC; Kiraly B; Huang Y; Huang TJ
    Lab Chip; 2010 Sep; 10(18):2387-93. PubMed ID: 20697662
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.