These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 36523446)

  • 1. A rolled-up-based fabrication method of 3D helical microrobots.
    Wang Z; Mu X; Tan L; Zhong Y; Cheang UK
    Front Robot AI; 2022; 9():1063987. PubMed ID: 36523446
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication and wireless micromanipulation of magnetic-biocompatible microrobots using microencapsulation for microrobotics and microfluidics applications.
    Li H; Zhang J; Zhang N; Kershaw J; Wang L
    J Microencapsul; 2016 Dec; 33(8):712-717. PubMed ID: 27632892
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fabrication of Bilayer Magnetically Actuated L-Shaped Microrobot Based on Chitosan via Photolithography.
    Wang H; Song X; Xiong J; Cheang UK
    Polymers (Basel); 2022 Dec; 14(24):. PubMed ID: 36559876
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A diatom-based biohybrid microrobot with a high drug-loading capacity and pH-sensitive drug release for target therapy.
    Li M; Wu J; Lin D; Yang J; Jiao N; Wang Y; Liu L
    Acta Biomater; 2022 Dec; 154():443-453. PubMed ID: 36243369
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 3D-printed microrobots for biomedical applications.
    Wei K; Tang C; Ma H; Fang X; Yang R
    Biomater Sci; 2024 Aug; 12(17):4301-4334. PubMed ID: 39041236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Controllable Fabrication of Functional Microhelices with Droplet Microfluidics.
    Cai QW; Ju XJ; Zhang SY; Chen ZH; Hu JQ; Zhang LP; Xie R; Wang W; Liu Z; Chu LY
    ACS Appl Mater Interfaces; 2019 Dec; 11(49):46241-46250. PubMed ID: 31739661
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photothermal-Responsive Shape-Memory Magnetic Helical Microrobots with Programmable Addressable Shape Changes.
    Zhao F; Rong W; Wang L; Sun L
    ACS Appl Mater Interfaces; 2023 May; 15(21):25942-25951. PubMed ID: 37204337
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cooperative Micromanipulation Using the Independent Actuation of Fifty Microrobots in Parallel.
    Rahman MA; Cheng J; Wang Z; Ohta AT
    Sci Rep; 2017 Jun; 7(1):3278. PubMed ID: 28607359
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Responsive Hydrogel-Based Modular Microrobots for Multi-Functional Micromanipulation.
    Tan L; Cappelleri DJ
    Small; 2024 Nov; 20(47):e2404311. PubMed ID: 39040007
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-printed microrobots from design to translation.
    Dabbagh SR; Sarabi MR; Birtek MT; Seyfi S; Sitti M; Tasoglu S
    Nat Commun; 2022 Oct; 13(1):5875. PubMed ID: 36198675
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-Controlled Microrobots Fabricated by Photopolymerization.
    Liang X; Chen Z; Deng Y; Liu D; Liu X; Huang Q; Arai T
    Cyborg Bionic Syst; 2023; 4():0009. PubMed ID: 37287461
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 3D printing of functional microrobots.
    Li J; Pumera M
    Chem Soc Rev; 2021 Mar; 50(4):2794-2838. PubMed ID: 33470252
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Layer-by-Layer Fabrication of Hydrogel Microsystems for Controlled Drug Delivery From Untethered Microrobots.
    Bernasconi R; Pizzetti F; Rossetti A; Butler B; Levi M; Pané S; Rossi F; Magagnin L
    Front Bioeng Biotechnol; 2021; 9():692648. PubMed ID: 34722474
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-driven microrobots: capture and transport of bacteria and microparticles in a fluid medium.
    Debata S; Kherani NA; Panda SK; Singh DP
    J Mater Chem B; 2022 Oct; 10(40):8235-8243. PubMed ID: 36129102
    [TBL] [Abstract][Full Text] [Related]  

  • 15. High-resolution and high-speed 3D tracking of microrobots using a fluorescent light field microscope.
    Lv J; Hu Y; Zhao H; Ye M; Ding N; Zhong J; Wang X
    Quant Imaging Med Surg; 2023 Mar; 13(3):1426-1439. PubMed ID: 36915357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Shape Memory Alloy Helical Microrobots with Transformable Capability towards Vascular Occlusion Treatment.
    Zhang H; Xu B; Ouyang Y; Wang Y; Zhu H; Huang G; Cui J; Mei Y
    Research (Wash D C); 2022; 2022():9842752. PubMed ID: 35928304
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Closed-loop Control for a Heterogeneous Group of Magnetically-actuated Microrobots.
    Beaver LE; Shah ZH; Sokolich M; Yilmaz AE; Yang Y; Belta C; Das S
    Int Conf Manip Autom Robot Small Scales; 2023 Oct; 2023():. PubMed ID: 39421402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Facile Fabrication of Magnetic Microrobots Based on Spirulina Templates for Targeted Delivery and Synergistic Chemo-Photothermal Therapy.
    Wang X; Cai J; Sun L; Zhang S; Gong D; Li X; Yue S; Feng L; Zhang D
    ACS Appl Mater Interfaces; 2019 Feb; 11(5):4745-4756. PubMed ID: 30638360
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Acoustics-Actuated Microrobots.
    Xiao Y; Zhang J; Fang B; Zhao X; Hao N
    Micromachines (Basel); 2022 Mar; 13(3):. PubMed ID: 35334771
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bio-inspired magnetic swimming microrobots for biomedical applications.
    Peyer KE; Zhang L; Nelson BJ
    Nanoscale; 2013 Feb; 5(4):1259-72. PubMed ID: 23165991
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.