These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 36523551)

  • 21. Amyloid-like amelogenin nanoribbons template mineralization via a low-energy interface of ion binding sites.
    Akkineni S; Zhu C; Chen J; Song M; Hoff SE; Bonde J; Tao J; Heinz H; Habelitz S; De Yoreo JJ
    Proc Natl Acad Sci U S A; 2022 May; 119(19):e2106965119. PubMed ID: 35522709
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The expanded amelogenin polyproline region preferentially binds to apatite versus carbonate and promotes apatite crystal elongation.
    Gopinathan G; Jin T; Liu M; Li S; Atsawasuwan P; Galang MT; Allen M; Luan X; Diekwisch TG
    Front Physiol; 2014; 5():430. PubMed ID: 25426079
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Role of 20-kDa amelogenin (P148) phosphorylation in calcium phosphate formation in vitro.
    Kwak SY; Wiedemann-Bidlack FB; Beniash E; Yamakoshi Y; Simmer JP; Litman A; Margolis HC
    J Biol Chem; 2009 Jul; 284(28):18972-9. PubMed ID: 19443653
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of calcium phosphate formation by native amelogenins in vitro.
    Kwak SY; Kim S; Yamakoshi Y; Simmer JP; Beniash E; Margolis HC
    Connect Tissue Res; 2014 Aug; 55 Suppl 1(0):21-4. PubMed ID: 25158174
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Preferential and selective degradation and removal of amelogenin adsorbed on hydroxyapatites by MMP20 and KLK4 in vitro.
    Zhu L; Liu H; Witkowska HE; Huang Y; Tanimoto K; Li W
    Front Physiol; 2014; 5():268. PubMed ID: 25104939
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mineral association changes the secondary structure and dynamics of murine amelogenin.
    Lu JX; Xu YS; Buchko GW; Shaw WJ
    J Dent Res; 2013 Nov; 92(11):1000-4. PubMed ID: 24130249
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional roles of prolines at amelogenin C terminal during tooth enamel formation.
    Zhu L; Tanimoto K; Le T; DenBesten PK; Li W
    Cells Tissues Organs; 2009; 189(1-4):203-6. PubMed ID: 18701806
    [TBL] [Abstract][Full Text] [Related]  

  • 28. MMP20 Proteolysis of Native Amelogenin Regulates Mineralization In Vitro.
    Kwak SY; Yamakoshi Y; Simmer JP; Margolis HC
    J Dent Res; 2016 Dec; 95(13):1511-1517. PubMed ID: 27558264
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Roles of amorphous calcium phosphate and biological additives in the assembly of hydroxyapatite nanoparticles.
    Tao J; Pan H; Zeng Y; Xu X; Tang R
    J Phys Chem B; 2007 Nov; 111(47):13410-8. PubMed ID: 17979266
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Analysis of self-assembly and apatite binding properties of amelogenin proteins lacking the hydrophilic C-terminal.
    Moradian-Oldak J; Bouropoulos N; Wang L; Gharakhanian N
    Matrix Biol; 2002 Mar; 21(2):197-205. PubMed ID: 11852235
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Self-assembly of a recombinant amelogenin protein generates supramolecular structures.
    Fincham AG; Moradian-Oldak J; Simmer JP; Sarte P; Lau EC; Diekwisch T; Slavkin HC
    J Struct Biol; 1994; 112(2):103-9. PubMed ID: 8060728
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Possible roles of partial sequences at N- and C-termini of amelogenin in protein-enamel mineral interaction.
    Aoba T; Moreno EC; Kresak M; Tanabe T
    J Dent Res; 1989 Sep; 68(9):1331-6. PubMed ID: 2778177
    [TBL] [Abstract][Full Text] [Related]  

  • 33. In situ AFM study of amelogenin assembly and disassembly dynamics on charged surfaces provides insights on matrix protein self-assembly.
    Chen CL; Bromley KM; Moradian-Oldak J; DeYoreo JJ
    J Am Chem Soc; 2011 Nov; 133(43):17406-13. PubMed ID: 21916473
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Single-molecule determination of the face-specific adsorption of Amelogenin's C-terminus on hydroxyapatite.
    Friddle RW; Battle K; Trubetskoy V; Tao J; Salter EA; Moradian-Oldak J; De Yoreo JJ; Wierzbicki A
    Angew Chem Int Ed Engl; 2011 Aug; 50(33):7541-5. PubMed ID: 21710666
    [No Abstract]   [Full Text] [Related]  

  • 35. Adsorption processes of Gly and Glu amino acids on hydroxyapatite surfaces at the atomic level.
    Pan H; Tao J; Xu X; Tang R
    Langmuir; 2007 Aug; 23(17):8972-81. PubMed ID: 17658861
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structure, orientation, and dynamics of the C-terminal hexapeptide of LRAP determined using solid-state NMR.
    Shaw WJ; Ferris K
    J Phys Chem B; 2008 Dec; 112(51):16975-81. PubMed ID: 19368031
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Selective adsorption of porcine-amelogenins onto hydroxyapatite and their inhibitory activity on hydroxyapatite growth in supersaturated solutions.
    Aoba T; Fukae M; Tanabe T; Shimizu M; Moreno EC
    Calcif Tissue Int; 1987 Nov; 41(5):281-9. PubMed ID: 2825935
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Regulation of calcium phosphate formation by amelogenins under physiological conditions.
    Kwak SY; Green S; Wiedemann-Bidlack FB; Beniash E; Yamakoshi Y; Simmer JP; Margolis HC
    Eur J Oral Sci; 2011 Dec; 119 Suppl 1(Suppl 1):103-11. PubMed ID: 22243235
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Loss of biological control of enamel mineralization in amelogenin-phosphorylation-deficient mice.
    Stifler CA; Yamazaki H; Gilbert PUPA; Margolis HC; Beniash E
    J Struct Biol; 2022 Jun; 214(2):107844. PubMed ID: 35219810
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Protein Phosphorylation and Mineral Binding Affect the Secondary Structure of the Leucine-Rich Amelogenin Peptide.
    Yamazaki H; Beniash E; Yamakoshi Y; Simmer JP; Margolis HC
    Front Physiol; 2017; 8():450. PubMed ID: 28706493
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.