BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 36523612)

  • 1. A novel elicitor protein phosphopentomutase from
    Li Z; Hu J; Sun Q; Zhang X; Chang R; Wang Y
    Front Plant Sci; 2022; 13():1064589. PubMed ID: 36523612
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of Key Residues Essential for the Activation of Plant Immunity by Subtilisin From
    Hu J; Chang R; Yuan Y; Li Z; Wang Y
    Front Microbiol; 2022; 13():869596. PubMed ID: 36046019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition activity of tomato endophyte Bacillus velezensis FQ-G3 against postharvest Botrytis cinerea.
    Feng B; Li P; Chen D; Ding C
    Folia Microbiol (Praha); 2024 Apr; 69(2):361-371. PubMed ID: 37436591
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tomato SlRbohB, a member of the NADPH oxidase family, is required for disease resistance against Botrytis cinerea and tolerance to drought stress.
    Li X; Zhang H; Tian L; Huang L; Liu S; Li D; Song F
    Front Plant Sci; 2015; 6():463. PubMed ID: 26157450
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization of a new Bacillus velezensis as a powerful biocontrol agent against tomato gray mold.
    Li S; Xiao Q; Yang H; Huang J; Li Y
    Pestic Biochem Physiol; 2022 Oct; 187():105199. PubMed ID: 36127070
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bacillus velezensis FX-6 suppresses the infection of Botrytis cinerea and increases the biomass of tomato plants.
    Li Z; Li J; Yu M; Quandahor P; Tian T; Shen T
    PLoS One; 2023; 18(6):e0286971. PubMed ID: 37319286
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Function of miR825 and miR825* as Negative Regulators in
    Nie P; Chen C; Yin Q; Jiang C; Guo J; Zhao H; Niu D
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31614458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Selenium Combined with Methyl Jasmonate to Control Tomato Gray Mold by Optimizing Microbial Community Structure in Plants.
    Li C; Hu C; Xie J; Shi G; Wang X; Yuan X; Li K; Chen S; Zhao X; Fan G
    J Fungi (Basel); 2022 Jul; 8(7):. PubMed ID: 35887486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Overexpression of SlMYB75 enhances resistance to Botrytis cinerea and prolongs fruit storage life in tomato.
    Liu M; Zhang Z; Xu Z; Wang L; Chen C; Ren Z
    Plant Cell Rep; 2021 Jan; 40(1):43-58. PubMed ID: 32990799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The
    Yang Y; Yang X; Dong Y; Qiu D
    Front Microbiol; 2018; 9():2535. PubMed ID: 30405585
    [No Abstract]   [Full Text] [Related]  

  • 11. Knockout of SlNPR1 enhances tomato plants resistance against Botrytis cinerea by modulating ROS homeostasis and JA/ET signaling pathways.
    Li R; Wang L; Li Y; Zhao R; Zhang Y; Sheng J; Ma P; Shen L
    Physiol Plant; 2020 Dec; 170(4):569-579. PubMed ID: 32840878
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of Vitis amurensis VaERF20 in Arabidopsis thaliana Improves Resistance to Botrytis cinerea and Pseudomonas syringae pv. Tomato DC3000.
    Wang M; Zhu Y; Han R; Yin W; Guo C; Li Z; Wang X
    Int J Mol Sci; 2018 Mar; 19(3):. PubMed ID: 29494485
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel biocontrol agent Bacillus velezensis K01 for management of gray mold caused by Botrytis cinerea.
    Xue Y; Zhang Y; Huang K; Wang X; Xing M; Xu Q; Guo Y
    AMB Express; 2023 Aug; 13(1):91. PubMed ID: 37642883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unraveling the Molecular Mechanisms of Tomatoes' Defense against
    Tian S; Liu B; Shen Y; Cao S; Lai Y; Lu G; Wang Z; Wang A
    Plants (Basel); 2023 Aug; 12(16):. PubMed ID: 37631176
    [No Abstract]   [Full Text] [Related]  

  • 15. Tomato Sl3-MMP, a member of the Matrix metalloproteinase family, is required for disease resistance against Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000.
    Li D; Zhang H; Song Q; Wang L; Liu S; Hong Y; Huang L; Song F
    BMC Plant Biol; 2015 Jun; 15():143. PubMed ID: 26070456
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antifungal compound, methyl hippurate from Bacillus velezensis CE 100 and its inhibitory effect on growth of Botrytis cinerea.
    Maung CEH; Lee HG; Cho JY; Kim KY
    World J Microbiol Biotechnol; 2021 Aug; 37(9):159. PubMed ID: 34420104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways.
    Zhang Y; Li D; Zhang H; Hong Y; Huang L; Liu S; Li X; Ouyang Z; Song F
    BMC Plant Biol; 2015 Oct; 15():252. PubMed ID: 26490733
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Overexpression of Sly-miR398b Compromises Disease Resistance against
    Liu Y; Yu Y; Fei S; Chen Y; Xu Y; Zhu Z; He Y
    Plants (Basel); 2023 Jul; 12(13):. PubMed ID: 37447133
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Silencing of DND1 in potato and tomato impedes conidial germination, attachment and hyphal growth of Botrytis cinerea.
    Sun K; van Tuinen A; van Kan JAL; Wolters AA; Jacobsen E; Visser RGF; Bai Y
    BMC Plant Biol; 2017 Dec; 17(1):235. PubMed ID: 29212470
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    Balderas-Ruíz KA; Gómez-Guerrero CI; Trujillo-Roldán MA; Valdez-Cruz NA; Aranda-Ocampo S; Juárez AM; Leyva E; Galindo E; Serrano-Carreón L
    Curr Res Microb Sci; 2021 Dec; 2():100076. PubMed ID: 34841365
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 9.