These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

160 related articles for article (PubMed ID: 36523612)

  • 21. New Insights into
    Morales P; González M; Salvatierra-Martínez R; Araya M; Ostria-Gallardo E; Stoll A
    Microorganisms; 2022 Jul; 10(8):. PubMed ID: 36013965
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cell-free supernatant of
    Zhao H; Liu K; Fan Y; Cao J; Li H; Song W; Liu Y; Miao M
    Front Microbiol; 2022; 13():980022. PubMed ID: 35992680
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Abscisic acid determines basal susceptibility of tomato to Botrytis cinerea and suppresses salicylic acid-dependent signaling mechanisms.
    Audenaert K; De Meyer GB; Höfte MM
    Plant Physiol; 2002 Feb; 128(2):491-501. PubMed ID: 11842153
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Tomato SlWRKY3 Negatively Regulates
    Luo D; Cai J; Sun W; Yang Q; Hu G; Wang T
    Plants (Basel); 2024 Jun; 13(12):. PubMed ID: 38931029
    [No Abstract]   [Full Text] [Related]  

  • 25. A novel Trichoderma asperellum strain DQ-1 promotes tomato growth and induces resistance to gray mold caused by Botrytis cinerea.
    Wang R; Chen D; Khan RAA; Cui J; Hou J; Liu T
    FEMS Microbiol Lett; 2021 Nov; 368(20):. PubMed ID: 34751779
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Tomato Stress-Associated Protein 4 Contributes Positively to Immunity Against Necrotrophic Fungus
    Liu S; Yuan X; Wang Y; Wang H; Wang J; Shen Z; Gao Y; Cai J; Li D; Song F
    Mol Plant Microbe Interact; 2019 May; 32(5):566-582. PubMed ID: 30589365
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A Biocontrol Strain of
    Wang X; Zhou X; Cai Z; Guo L; Chen X; Chen X; Liu J; Feng M; Qiu Y; Zhang Y; Wang A
    Pathogens; 2020 Dec; 10(1):. PubMed ID: 33396336
    [No Abstract]   [Full Text] [Related]  

  • 28. Nitric oxide and hydrogen peroxide in tomato resistance. Nitric oxide modulates hydrogen peroxide level in o-hydroxyethylorutin-induced resistance to Botrytis cinerea in tomato.
    Małolepsza U; Rózalska S
    Plant Physiol Biochem; 2005 Jun; 43(6):623-35. PubMed ID: 15922611
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The role of ethylene and wound signaling in resistance of tomato to Botrytis cinerea.
    Díaz J; ten Have A; van Kan JA
    Plant Physiol; 2002 Jul; 129(3):1341-51. PubMed ID: 12114587
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Tomato SlERF.A1, SlERF.B4, SlERF.C3 and SlERF.A3, Members of B3 Group of ERF Family, Are Required for Resistance to
    Ouyang Z; Liu S; Huang L; Hong Y; Li X; Huang L; Zhang Y; Zhang H; Li D; Song F
    Front Plant Sci; 2016; 7():1964. PubMed ID: 28083004
    [TBL] [Abstract][Full Text] [Related]  

  • 31. SlERF2 Is Associated with Methyl Jasmonate-Mediated Defense Response against Botrytis cinerea in Tomato Fruit.
    Yu W; Zhao R; Sheng J; Shen L
    J Agric Food Chem; 2018 Sep; 66(38):9923-9932. PubMed ID: 30192535
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inhibition of SlMPK1, SlMPK2, and SlMPK3 Disrupts Defense Signaling Pathways and Enhances Tomato Fruit Susceptibility to Botrytis cinerea.
    Zheng Y; Yang Y; Liu C; Chen L; Sheng J; Shen L
    J Agric Food Chem; 2015 Jun; 63(22):5509-17. PubMed ID: 25910076
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Combined Use of
    Li TT; Zhang JD; Tang JQ; Liu ZC; Li YQ; Chen J; Zou LW
    Plant Dis; 2020 May; 104(5):1298-1304. PubMed ID: 32196417
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lignin metabolism involves Botrytis cinerea BcGs1- induced defense response in tomato.
    Yang C; Liang Y; Qiu D; Zeng H; Yuan J; Yang X
    BMC Plant Biol; 2018 Jun; 18(1):103. PubMed ID: 29866036
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Strawberry
    Jia S; Wang Y; Zhang G; Yan Z; Cai Q
    Genes (Basel); 2020 Dec; 12(1):. PubMed ID: 33396436
    [TBL] [Abstract][Full Text] [Related]  

  • 36. SKIP Silencing Decreased Disease Resistance Against
    Zhang H; Yin L; Song F; Jiang M
    Front Plant Sci; 2020; 11():593267. PubMed ID: 33381133
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Characterization of miRNAs associated with Botrytis cinerea infection of tomato leaves.
    Jin W; Wu F
    BMC Plant Biol; 2015 Jan; 15():1. PubMed ID: 25592487
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Tomato WRKY transcriptional factor SlDRW1 is required for disease resistance against Botrytis cinerea and tolerance to oxidative stress.
    Liu B; Hong YB; Zhang YF; Li XH; Huang L; Zhang HJ; Li DY; Song FM
    Plant Sci; 2014 Oct; 227():145-56. PubMed ID: 25219316
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Phosphorylation of ATG18a by BAK1 suppresses autophagy and attenuates plant resistance against necrotrophic pathogens.
    Zhang B; Shao L; Wang J; Zhang Y; Guo X; Peng Y; Cao Y; Lai Z
    Autophagy; 2021 Sep; 17(9):2093-2110. PubMed ID: 32804012
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sodium pheophorbide a controls cherry tomato gray mold (Botrytis cinerea) by destroying fungal cell structure and enhancing disease resistance-related enzyme activities in fruit.
    Ji JY; Yang J; Zhang BW; Wang SR; Zhang GC; Lin LN
    Pestic Biochem Physiol; 2020 Jun; 166():104581. PubMed ID: 32448427
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.