BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 36523644)

  • 1. Automated Classification of Intramedullary Spinal Cord Tumors and Inflammatory Demyelinating Lesions Using Deep Learning.
    Zhuo Z; Zhang J; Duan Y; Qu L; Feng C; Huang X; Cheng D; Xu X; Sun T; Li Z; Guo X; Gong X; Wang Y; Jia W; Tian D; Zhang X; Shi F; Haller S; Barkhof F; Ye C; Liu Y
    Radiol Artif Intell; 2022 Nov; 4(6):e210292. PubMed ID: 36523644
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transformer-Based Deep-Learning Algorithm for Discriminating Demyelinating Diseases of the Central Nervous System With Neuroimaging.
    Huang C; Chen W; Liu B; Yu R; Chen X; Tang F; Liu J; Lu W
    Front Immunol; 2022; 13():897959. PubMed ID: 35774780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Seropositive Neuromyelitis Optica in a Case of Undiagnosed Ankylosing Spondylitis: A Neuro-Rheumatological Conundrum.
    Ghosh Md R; Roy D; León-Ruiz M; Das S; Dubey S; Benito-León J
    Qatar Med J; 2022; 2022(3):29. PubMed ID: 35864917
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A pipeline to quantify spinal cord atrophy with deep learning: Application to differentiation of MS and NMOSD patients.
    Toufani H; Vard A; Adibi I
    Phys Med; 2021 Sep; 89():51-62. PubMed ID: 34352676
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Radiomics in multiple sclerosis and neuromyelitis optica spectrum disorder.
    Liu Y; Dong D; Zhang L; Zang Y; Duan Y; Qiu X; Huang J; Dong H; Barkhof F; Hu C; Fang M; Tian J; Li K
    Eur Radiol; 2019 Sep; 29(9):4670-4677. PubMed ID: 30770971
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Visual fluorescence combined with laser spectroscopy in surgery for intramedullary spinal cord tumors].
    Konovalov NA; Timonin SY; Zelenkov PV; Goryainov SA; Asyutin DS; Zakirov BA; Kaprovoy SV
    Zh Vopr Neirokhir Im N N Burdenko; 2020; 84(6):5-14. PubMed ID: 33306295
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Intramedullary spinal cord ependymoma and astrocytoma: intraoperative frozen-section diagnosis, extent of resection, and outcomes.
    Hongo H; Takai K; Komori T; Taniguchi M
    J Neurosurg Spine; 2018 Oct; 30(1):133-139. PubMed ID: 30485241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Brain and spinal cord lesion criteria distinguishes AQP4-positive neuromyelitis optica and MOG-positive disease from multiple sclerosis.
    Bensi C; Marrodan M; González A; Chertcoff A; Osa Sanz E; Chaves H; Schteinschnaider A; Correale J; Farez MF
    Mult Scler Relat Disord; 2018 Oct; 25():246-250. PubMed ID: 30144694
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deep Learning-Based Method to Differentiate Neuromyelitis Optica Spectrum Disorder From Multiple Sclerosis.
    Kim H; Lee Y; Kim YH; Lim YM; Lee JS; Woo J; Jang SK; Oh YJ; Kim HW; Lee EJ; Kang DW; Kim KK
    Front Neurol; 2020; 11():599042. PubMed ID: 33329357
    [No Abstract]   [Full Text] [Related]  

  • 10. The utility of diffusion-weighted imaging in patients with spinal cord infarction: difference from the findings of neuromyelitis optica spectrum disorder.
    Kobayashi M
    BMC Neurol; 2022 Oct; 22(1):382. PubMed ID: 36221057
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Joint MRI T1 Unenhancing and Contrast-enhancing Multiple Sclerosis Lesion Segmentation with Deep Learning in OPERA Trials.
    Krishnan AP; Song Z; Clayton D; Gaetano L; Jia X; de Crespigny A; Bengtsson T; Carano RAD
    Radiology; 2022 Mar; 302(3):662-673. PubMed ID: 34904871
    [TBL] [Abstract][Full Text] [Related]  

  • 12. 2.5D transfer deep learning model for segmentation of contrast-enhancing lesions on brain magnetic resonance imaging of multiple sclerosis and neuromyelitis optica spectrum disorder.
    Huang L; Zhao Z; An L; Gong Y; Wang Y; Yang Q; Wang Z; Hu G; Wang Y; Guo C
    Quant Imaging Med Surg; 2024 Jan; 14(1):273-290. PubMed ID: 38223040
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Seropositive Neuromyelitis Optica imitating an Intramedullary Cervical Spinal Cord Tumor: Case Report and Brief Review of the Literature.
    Woo PY; Chiu JH; Leung KM; Chan KY
    Asian Spine J; 2014 Oct; 8(5):684-8. PubMed ID: 25346824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep learning based on preoperative magnetic resonance (MR) images improves the predictive power of survival models in primary spinal cord astrocytomas.
    Sun T; Wang Y; Liu X; Li Z; Zhang J; Lu J; Qu L; Haller S; Duan Y; Zhuo Z; Cheng D; Xu X; Jia W; Liu Y
    Neuro Oncol; 2023 Jun; 25(6):1157-1165. PubMed ID: 36562243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Imaging Differences between Neuromyelitis Optica Spectrum Disorders and Multiple Sclerosis: A Multi-Institutional Study in Japan.
    Tatekawa H; Sakamoto S; Hori M; Kaichi Y; Kunimatsu A; Akazawa K; Miyasaka T; Oba H; Okubo T; Hasuo K; Yamada K; Taoka T; Doishita S; Shimono T; Miki Y
    AJNR Am J Neuroradiol; 2018 Jul; 39(7):1239-1247. PubMed ID: 29724765
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spinal cord involvement by atrophy and associations with disability are different between multiple sclerosis and neuromyelitis optica spectrum disorder.
    Nakamura Y; Liu Z; Fukumoto S; Shinoda K; Sakoda A; Matsushita T; Hayashida S; Isobe N; Watanabe M; Hiwatashi A; Yamasaki R; Kira JI
    Eur J Neurol; 2020 Jan; 27(1):92-99. PubMed ID: 31304648
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cervical cord myelin water imaging shows degenerative changes over one year in multiple sclerosis but not neuromyelitis optica spectrum disorder.
    Combes AJE; Matthews L; Lee JS; Li DKB; Carruthers R; Traboulsee AL; Barker GJ; Palace J; Kolind S
    Neuroimage Clin; 2017; 16():17-22. PubMed ID: 28725551
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative Susceptibility Mapping-Derived Radiomic Features in Discriminating Multiple Sclerosis From Neuromyelitis Optica Spectrum Disorder.
    Yan Z; Liu H; Chen X; Zheng Q; Zeng C; Zheng Y; Ding S; Peng Y; Li Y
    Front Neurosci; 2021; 15():765634. PubMed ID: 34924934
    [No Abstract]   [Full Text] [Related]  

  • 19. Pathological observations of a long spinal cord lesion in a patient with multiple sclerosis.
    Yabata H; Saito Y; Fukuoka T; Akagi A; Riku Y; Sone J; Miyahara H; Doyu M; Yoshida M; Iwasaki Y
    Neuropathology; 2022 Jun; 42(3):212-217. PubMed ID: 35170108
    [TBL] [Abstract][Full Text] [Related]  

  • 20. MRI Patterns Distinguish AQP4 Antibody Positive Neuromyelitis Optica Spectrum Disorder From Multiple Sclerosis.
    Clarke L; Arnett S; Bukhari W; Khalilidehkordi E; Jimenez Sanchez S; O'Gorman C; Sun J; Prain KM; Woodhall M; Silvestrini R; Bundell CS; Abernethy DA; Bhuta S; Blum S; Boggild M; Boundy K; Brew BJ; Brownlee W; Butzkueven H; Carroll WM; Chen C; Coulthard A; Dale RC; Das C; Fabis-Pedrini MJ; Gillis D; Hawke S; Heard R; Henderson APD; Heshmat S; Hodgkinson S; Kilpatrick TJ; King J; Kneebone C; Kornberg AJ; Lechner-Scott J; Lin MW; Lynch C; Macdonell RAL; Mason DF; McCombe PA; Pereira J; Pollard JD; Ramanathan S; Reddel SW; Shaw CP; Spies JM; Stankovich J; Sutton I; Vucic S; Walsh M; Wong RC; Yiu EM; Barnett MH; Kermode AGK; Marriott MP; Parratt JDE; Slee M; Taylor BV; Willoughby E; Brilot F; Vincent A; Waters P; Broadley SA
    Front Neurol; 2021; 12():722237. PubMed ID: 34566866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.