These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 365243)

  • 21. Synthesis of alternative membrane-bound redox carriers during aerobic growth of Escherichia coli in the presence of potassium cyanide.
    Ashcroft JR; Haddock BA
    Biochem J; 1975 May; 148(2):349-52. PubMed ID: 1098659
    [TBL] [Abstract][Full Text] [Related]  

  • 22. An Escherichia coli mutant containing only demethylmenaquinone, but no menaquinone: effects on fumarate, dimethylsulfoxide, trimethylamine N-oxide and nitrate respiration.
    Wissenbach U; Ternes D; Unden G
    Arch Microbiol; 1992; 158(1):68-73. PubMed ID: 1444716
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Anaerobic transport of amino acids coupled to the glycerol-3-phosphate-fumarate oxidoreductase system in a cytochrome-deficient mutant of Escherichia coli.
    Singh AP; Bragg PD
    Biochim Biophys Acta; 1976 Mar; 423(3):450-61. PubMed ID: 130924
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Oxygen as Acceptor.
    Borisov VB; Verkhovsky MI
    EcoSal Plus; 2015; 6(2):. PubMed ID: 26734697
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Anaerobic growth of Escherichia coli K12 with fumarate as terminal electron acceptor. Genetic studies with menaquinone and fluoroacetate-resistant mutants.
    Guest JR
    J Gen Microbiol; 1979 Dec; 115(2):259-71. PubMed ID: 393800
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of the late steps of microbial heme synthesis: conversion of coproporphyrinogen to protoporphyrin.
    Jacobs NJ; Jacobs JM; Brent P
    J Bacteriol; 1971 Jul; 107(1):203-9. PubMed ID: 4935319
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Anaerobic cytochrome b1 in Escherichia coli: association with and regulation of nitrate reductase.
    MacGregor CH
    J Bacteriol; 1975 Mar; 121(3):1111-6. PubMed ID: 1090591
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Protoporphyrinogen oxidation, an enzymatic step in heme and chlorophyll synthesis: partial characterization of the reaction in plant organelles and comparison with mammalian and bacterial systems.
    Jacobs JM; Jacobs NJ
    Arch Biochem Biophys; 1984 Feb; 229(1):312-9. PubMed ID: 6703698
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Analysis of heme biosynthesis in catalase and cytochrome deficient yeast mutants.
    Labbe-Bois R; Rytka J; Litwinska J; Bilinski T
    Mol Gen Genet; 1977 Nov; 156(2):177-83. PubMed ID: 340901
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Bacillus subtilis HemY is a peripheral membrane protein essential for protoheme IX synthesis which can oxidize coproporphyrinogen III and protoporphyrinogen IX.
    Hansson M; Hederstedt L
    J Bacteriol; 1994 Oct; 176(19):5962-70. PubMed ID: 7928957
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A C-methyltransferase involved in both ubiquinone and menaquinone biosynthesis: isolation and identification of the Escherichia coli ubiE gene.
    Lee PT; Hsu AY; Ha HT; Clarke CF
    J Bacteriol; 1997 Mar; 179(5):1748-54. PubMed ID: 9045837
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Aeration-dependent changes in composition of the quinone pool in Escherichia coli. Evidence of post-transcriptional regulation of the quinone biosynthesis.
    Shestopalov AI; Bogachev AV; Murtazina RA; Viryasov MB; Skulachev VP
    FEBS Lett; 1997 Mar; 404(2-3):272-4. PubMed ID: 9119077
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Evidence for two different electron transfer pathways in the same enzyme, nitrate reductase A from Escherichia coli.
    Giordani R; Buc J
    Eur J Biochem; 2004 Jun; 271(12):2400-7. PubMed ID: 15182355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Quinones as the redox signal for the arc two-component system of bacteria.
    Georgellis D; Kwon O; Lin EC
    Science; 2001 Jun; 292(5525):2314-6. PubMed ID: 11423658
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Proton translocation in cytochrome-deficient mutants of Escherichia coli.
    Brookman JJ; Downie JA; Gibson F; Cox GB; Rosenberg H
    J Bacteriol; 1979 Feb; 137(2):705-10. PubMed ID: 154508
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Anaerobic electron transport in anaerobic flagellum formation in Escherichia coli.
    Hertz R; Bar-Tana J
    J Bacteriol; 1977 Dec; 132(3):1034-5. PubMed ID: 336600
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone.
    Myers JM; Myers CR
    J Bacteriol; 2000 Jan; 182(1):67-75. PubMed ID: 10613864
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The role of the membrane-bound hydrogenase in the energy-conserving oxidation of molecular hydrogen by Escherichia coli.
    Jones RW
    Biochem J; 1980 May; 188(2):345-50. PubMed ID: 6249272
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Isolation and characterization of respiratory-deficient mutants of Escherichia coli K-12.
    Schellhorn HE; Hassan HM
    J Bacteriol; 1988 Jan; 170(1):78-83. PubMed ID: 3275633
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sequence of b cytochromes relative to ubiquinone in the electron transport chain of Escherichia coli.
    Downie JA; Cox GB
    J Bacteriol; 1978 Feb; 133(2):477-84. PubMed ID: 203570
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.