These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 36524733)
1. Reversible Redox-Dependent Conformational Switch of the C-Terminal α-Helical Lid of Human Hsp70 Observed by In-Cell NMR. Liang Q; Zhang Y; Zhang H; Wu S; Gong W; Perrett S ACS Chem Biol; 2023 Jan; 18(1):176-183. PubMed ID: 36524733 [TBL] [Abstract][Full Text] [Related]
2. Yang J; Zhang H; Gong W; Liu Z; Wu H; Hu W; Chen X; Wang L; Wu S; Chen C; Perrett S J Biol Chem; 2020 Jun; 295(24):8302-8324. PubMed ID: 32332101 [TBL] [Abstract][Full Text] [Related]
3. Exploration of the cysteine reactivity of human inducible Hsp70 and cognate Hsc70. Hong Z; Gong W; Yang J; Li S; Liu Z; Perrett S; Zhang H J Biol Chem; 2023 Jan; 299(1):102723. PubMed ID: 36410435 [TBL] [Abstract][Full Text] [Related]
4. Effect of evolution of the C-terminal region on chaperone activity of Hsp70. Zhang H; Hu H; Wu S; Perrett S Protein Sci; 2023 Jan; 32(1):e4549. PubMed ID: 36533311 [TBL] [Abstract][Full Text] [Related]
5. The C-terminal GGAP motif of Hsp70 mediates substrate recognition and stress response in yeast. Gong W; Hu W; Xu L; Wu H; Wu S; Zhang H; Wang J; Jones GW; Perrett S J Biol Chem; 2018 Nov; 293(46):17663-17675. PubMed ID: 30228181 [TBL] [Abstract][Full Text] [Related]
6. PES inhibits human-inducible Hsp70 by covalent targeting of cysteine residues in the substrate-binding domain. Yang J; Gong W; Wu S; Zhang H; Perrett S J Biol Chem; 2021; 296():100210. PubMed ID: 33835030 [TBL] [Abstract][Full Text] [Related]
7. C-terminal amino acids are essential for human heat shock protein 70 dimerization. Marcion G; Seigneuric R; Chavanne E; Artur Y; Briand L; Hadi T; Gobbo J; Garrido C; Neiers F Cell Stress Chaperones; 2015 Jan; 20(1):61-72. PubMed ID: 25030382 [TBL] [Abstract][Full Text] [Related]
8. Glutathionylation of the Bacterial Hsp70 Chaperone DnaK Provides a Link between Oxidative Stress and the Heat Shock Response. Zhang H; Yang J; Wu S; Gong W; Chen C; Perrett S J Biol Chem; 2016 Mar; 291(13):6967-81. PubMed ID: 26823468 [TBL] [Abstract][Full Text] [Related]
9. Activation of the redox-regulated chaperone Hsp33 by domain unfolding. Graf PC; Martinez-Yamout M; VanHaerents S; Lilie H; Dyson HJ; Jakob U J Biol Chem; 2004 May; 279(19):20529-38. PubMed ID: 15023991 [TBL] [Abstract][Full Text] [Related]
10. Conformational heterogeneity in the Hsp70 chaperone-substrate ensemble identified from analysis of NMR-detected titration data. Sekhar A; Nagesh J; Rosenzweig R; Kay LE Protein Sci; 2017 Nov; 26(11):2207-2220. PubMed ID: 28833766 [TBL] [Abstract][Full Text] [Related]
11. Conformational dynamics of full-length inducible human Hsp70 derived from microsecond molecular dynamics simulations in explicit solvent. Nicolaï A; Delarue P; Senet P J Biomol Struct Dyn; 2013 Oct; 31(10):1111-26. PubMed ID: 23075261 [TBL] [Abstract][Full Text] [Related]
12. Defining the structure of the substrate-free state of the DnaK molecular chaperone. Swain JF; Sivendran R; Gierasch LM Biochem Soc Symp; 2001; (68):69-82. PubMed ID: 11573348 [TBL] [Abstract][Full Text] [Related]
14. Heat shock-induced chaperoning by Hsp70 is enabled in-cell. Guin D; Gelman H; Wang Y; Gruebele M PLoS One; 2019; 14(9):e0222990. PubMed ID: 31557226 [TBL] [Abstract][Full Text] [Related]
15. Unfolding of metastable linker region is at the core of Hsp33 activation as a redox-regulated chaperone. Cremers CM; Reichmann D; Hausmann J; Ilbert M; Jakob U J Biol Chem; 2010 Apr; 285(15):11243-51. PubMed ID: 20139072 [TBL] [Abstract][Full Text] [Related]
17. Semi-Empirical Structure Determination of Escherichia coli Hsp33 and Identification of Dynamic Regulatory Elements for the Activation Process. Lee YS; Lee J; Ryu KS; Lee Y; Jung TG; Jang JH; Sim DW; Kim EH; Seo MD; Lee KW; Won HS J Mol Biol; 2015 Dec; 427(24):3850-61. PubMed ID: 26453802 [TBL] [Abstract][Full Text] [Related]
18. Monitoring conformational heterogeneity of the lid of DnaK substrate-binding domain during its chaperone cycle. Banerjee R; Jayaraj GG; Peter JJ; Kumar V; Mapa K FEBS J; 2016 Aug; 283(15):2853-68. PubMed ID: 27248857 [TBL] [Abstract][Full Text] [Related]
19. Importance of the D and E helices of the molecular chaperone DnaK for ATP binding and substrate release. Slepenkov SV; Patchen B; Peterson KM; Witt SN Biochemistry; 2003 May; 42(19):5867-76. PubMed ID: 12741845 [TBL] [Abstract][Full Text] [Related]
20. Crystal structure of the stress-inducible human heat shock protein 70 substrate-binding domain in complex with peptide substrate. Zhang P; Leu JI; Murphy ME; George DL; Marmorstein R PLoS One; 2014; 9(7):e103518. PubMed ID: 25058147 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]