These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36524867)

  • 1. Bio-based monomers for amide-containing sustainable polymers.
    Yan K; Wang J; Wang Z; Yuan L
    Chem Commun (Camb); 2023 Jan; 59(4):382-400. PubMed ID: 36524867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards high-performance sustainable polymers via isomerization-driven irreversible ring-opening polymerization of five-membered thionolactones.
    Yuan P; Sun Y; Xu X; Luo Y; Hong M
    Nat Chem; 2022 Mar; 14(3):294-303. PubMed ID: 34824460
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Highly Efficient Cationic Polymerization of β-Pinene, a Bio-Based, Renewable Olefin, with TiCl
    Verebélyi K; Szabó Á; Réti Z; Szarka G; Villányi Á; Iván B
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982242
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Self-Polymerization Promoting Monomers: In Situ Transformation of Disulfide-Linked Benzoxazines into the Thiazolidine Structure.
    Monisha M; Sahu S; Lochab B
    Biomacromolecules; 2021 Oct; 22(10):4408-4421. PubMed ID: 34582169
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Progress Toward Sustainable Reversible Deactivation Radical Polymerization.
    Scholten PBV; Moatsou D; Detrembleur C; Meier MAR
    Macromol Rapid Commun; 2020 Aug; 41(16):e2000266. PubMed ID: 32686239
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Resonance promoted ring-opening metathesis polymerization of twisted amides.
    Xu M; Bullard KK; Nicely AM; Gutekunst WR
    Chem Sci; 2019 Nov; 10(42):9729-9734. PubMed ID: 32055341
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sustainability and Polyesters: Beyond Metals and Monomers to Function and Fate.
    De Hoe GX; Şucu T; Shaver MP
    Acc Chem Res; 2022 Jun; 55(11):1514-1523. PubMed ID: 35579567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Designing Degradable Polymers from Tricycloalkenes via Complete Cascade Metathesis Polymerization.
    Yang Y; Cho Y; Choi TL
    Angew Chem Int Ed Engl; 2024 Apr; 63(18):e202400235. PubMed ID: 38456570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Depolymerizable Olefinic Polymers Based on Fused-Ring Cyclooctene Monomers.
    Sathe D; Zhou J; Chen H; Wang J
    J Vis Exp; 2022 Dec; (190):. PubMed ID: 36591980
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular Design of Functional Polymers for Silica Scale Inhibition.
    Kaneda M; Dong D; Chen Y; Zhang X; Xue Y; Bryantsev VS; Elimelech M; Zhong M
    Environ Sci Technol; 2024 Jan; 58(1):871-882. PubMed ID: 38150403
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bio- and chemocatalysis cascades as a bridge between biology and chemistry for green polymer synthesis.
    Marszałek-Harych A; Jędrzkiewicz D; Ejfler J
    Cell Mol Biol Lett; 2017; 22():28. PubMed ID: 29225630
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Polymers from Plant Oils Linked by Siloxane Bonds for Programmed Depolymerization.
    Cheng C; Shi JX; Kang EH; Nelson TF; Sander M; McNeill K; Hartwig JF
    J Am Chem Soc; 2024 May; 146(18):12645-12655. PubMed ID: 38651821
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of Altrose Poly-amido-saccharides with β-N-(1→2)-d-amide Linkages: A Right-Handed Helical Conformation Engineered in at the Monomer Level.
    Xiao R; Dane EL; Zeng J; McKnight CJ; Grinstaff MW
    J Am Chem Soc; 2017 Oct; 139(40):14217-14223. PubMed ID: 28902504
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cascade Ring-Opening/Ring-Closing Metathesis Polymerization of a Monomer Containing a Norbornene and a Cyclohexene Ring.
    Yasir M; Kilbinger AFM
    ACS Macro Lett; 2021 Feb; 10(2):210-214. PubMed ID: 35570788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Photoinduced Iron-Catalyzed ATRP of Renewable Monomers in Low-Toxicity Solvents: A Greener Approach.
    Parkatzidis K; Boner S; Wang HS; Anastasaki A
    ACS Macro Lett; 2022 Jul; 11(7):841-846. PubMed ID: 35731694
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Chemically Recyclable Dithioacetal Polymers via Reversible Entropy-Driven Ring-Opening Polymerization.
    Kariyawasam LS; Highmoore JF; Yang Y
    Angew Chem Int Ed Engl; 2023 Jun; 62(26):e202303039. PubMed ID: 36988027
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Radical Ring-Opening Polymerization: Scope, Limitations, and Application to (Bio)Degradable Materials.
    Tardy A; Nicolas J; Gigmes D; Lefay C; Guillaneuf Y
    Chem Rev; 2017 Feb; 117(3):1319-1406. PubMed ID: 28085265
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lipase-catalyzed ring-opening polymerization of natural compound-based cyclic monomers.
    Wang K; Li C; Man L; Zhang M; Jia YG; Zhu XX
    Chem Commun (Camb); 2023 Jul; 59(60):9182-9194. PubMed ID: 37431654
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Progress in renewable polymers from natural terpenes, terpenoids, and rosin.
    Wilbon PA; Chu F; Tang C
    Macromol Rapid Commun; 2013 Jan; 34(1):8-37. PubMed ID: 23065943
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toward living radical polymerization.
    Moad G; Rizzardo E; Thang SH
    Acc Chem Res; 2008 Sep; 41(9):1133-42. PubMed ID: 18700787
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.