These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 36524871)

  • 1. Thin Solid Electrolyte Separators for Solid-State Lithium-Sulfur Batteries.
    Kim S; Chart YA; Narayanan S; Pasta M
    Nano Lett; 2022 Dec; 22(24):10176-10183. PubMed ID: 36524871
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hybrid Lithium-Sulfur Batteries with a Solid Electrolyte Membrane and Lithium Polysulfide Catholyte.
    Yu X; Bi Z; Zhao F; Manthiram A
    ACS Appl Mater Interfaces; 2015 Aug; 7(30):16625-31. PubMed ID: 26161547
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrode-Electrolyte Interfaces in Lithium-Sulfur Batteries with Liquid or Inorganic Solid Electrolytes.
    Yu X; Manthiram A
    Acc Chem Res; 2017 Nov; 50(11):2653-2660. PubMed ID: 29112389
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-Conductivity Argyrodite Li
    Wang S; Zhang Y; Zhang X; Liu T; Lin YH; Shen Y; Li L; Nan CW
    ACS Appl Mater Interfaces; 2018 Dec; 10(49):42279-42285. PubMed ID: 30451491
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Lithium/Polysulfide Battery with Dual-Working Mode Enabled by Liquid Fuel and Acrylate-Based Gel Polymer Electrolyte.
    Liu M; Ren Y; Zhou D; Jiang H; Kang F; Zhao T
    ACS Appl Mater Interfaces; 2017 Jan; 9(3):2526-2534. PubMed ID: 28026937
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Shielding Polysulfide Intermediates by an Organosulfur-Containing Solid Electrolyte Interphase on the Lithium Anode in Lithium-Sulfur Batteries.
    Wei JY; Zhang XQ; Hou LP; Shi P; Li BQ; Xiao Y; Yan C; Yuan H; Huang JQ
    Adv Mater; 2020 Sep; 32(37):e2003012. PubMed ID: 32761715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Innovative Approaches to Li-Argyrodite Solid Electrolytes for All-Solid-State Lithium Batteries.
    Zhou L; Minafra N; Zeier WG; Nazar LF
    Acc Chem Res; 2021 Jun; 54(12):2717-2728. PubMed ID: 34032414
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Long-Term Stable Lithium Metal Anode in Highly Concentrated Sulfolane-Based Electrolytes with Ultrafine Porous Polyimide Separator.
    Maeyoshi Y; Ding D; Kubota M; Ueda H; Abe K; Kanamura K; Abe H
    ACS Appl Mater Interfaces; 2019 Jul; 11(29):25833-25843. PubMed ID: 31245988
    [TBL] [Abstract][Full Text] [Related]  

  • 9. All-Solid-State Thin-Film Lithium-Sulfur Batteries.
    Deng R; Ke B; Xie Y; Cheng S; Zhang C; Zhang H; Lu B; Wang X
    Nanomicro Lett; 2023 Mar; 15(1):73. PubMed ID: 36971905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Anodized Aluminum Oxide Separators with Aligned Channels for High-Performance Li-S Batteries.
    Wang B; Guo W; Fu Y
    ACS Appl Mater Interfaces; 2020 Feb; 12(5):5831-5837. PubMed ID: 31912726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(ether imide) Porous Membrane Developed by a Scalable Method for High-Performance Lithium-Sulfur Batteries: Combined Theoretical and Experimental Study.
    Raza W; Hussain A; Mehmood A; Deng Y; Mushtaq MA; Zhao J; Zong K; Luo G; Rehman LNU; Shen J; Liu D; Cai X
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):52794-52805. PubMed ID: 36394388
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Polar and Ordered-Channel Composite Separator Enables Antidendrite and Long-Cycle Lithium Metal Batteries.
    Wu Z; Cai Z; Fang B; Liu M; Wu H; Liu A; Ye F
    ACS Appl Mater Interfaces; 2021 Jun; 13(22):25890-25897. PubMed ID: 34043330
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review of Multifunctional Separators: Stabilizing the Cathode and the Anode for Alkali (Li, Na, and K) Metal-Sulfur and Selenium Batteries.
    Hao H; Hutter T; Boyce BL; Watt J; Liu P; Mitlin D
    Chem Rev; 2022 May; 122(9):8053-8125. PubMed ID: 35349271
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Pushing Lithium-Sulfur Batteries towards Practical Working Conditions through a Cathode-Electrolyte Synergy.
    Zhao C; Daali A; Hwang I; Li T; Huang X; Robertson D; Yang Z; Trask S; Xu W; Sun CJ; Xu GL; Amine K
    Angew Chem Int Ed Engl; 2022 Jul; 61(27):e202203466. PubMed ID: 35466514
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stable Lithium Plating and Stripping Enabled by a LiPON Nanolayer on PP Separator.
    Pang Y; Guan M; Pan Y; Tian M; Huang K; Jiang C; Xiang A; Wang X; Gong Y; Xiang Y; Zhang X
    Small; 2022 Jul; 18(26):e2104832. PubMed ID: 35655337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Beyond the Polysulfide Shuttle and Lithium Dendrite Formation: Addressing the Sluggish Sulfur Redox Kinetics for Practical High-Energy Li-S Batteries.
    Zhao C; Xu GL; Zhao T; Amine K
    Angew Chem Int Ed Engl; 2020 Sep; 59(40):17634-17640. PubMed ID: 32645250
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dual Protection of a Li-Ag Alloy Anode for All-Solid-State Lithium Metal Batteries with the Argyrodite Li
    Li B; Sun Z; Lv N; Hu Y; Jiang L; Zhang Z; Liu F
    ACS Appl Mater Interfaces; 2022 Aug; 14(33):37738-37746. PubMed ID: 35951550
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Methods to Improve Lithium Metal Anode for Li-S Batteries.
    Xiong X; Yan W; You C; Zhu Y; Chen Y; Fu L; Zhang Y; Yu N; Wu Y
    Front Chem; 2019; 7():827. PubMed ID: 31921761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A chemically stabilized sulfur cathode for lean electrolyte lithium sulfur batteries.
    Luo C; Hu E; Gaskell KJ; Fan X; Gao T; Cui C; Ghose S; Yang XQ; Wang C
    Proc Natl Acad Sci U S A; 2020 Jun; 117(26):14712-14720. PubMed ID: 32554498
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Suppressing the Shuttle Effect and Dendrite Growth in Lithium-Sulfur Batteries.
    Wang J; Yi S; Liu J; Sun S; Liu Y; Yang D; Xi K; Gao G; Abdelkader A; Yan W; Ding S; Kumar RV
    ACS Nano; 2020 Aug; 14(8):9819-9831. PubMed ID: 32634303
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.