BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 36524933)

  • 21. Leptin Manipulation Reduces Appetite and Causes a Switch in Mating Preference in the Plains Spadefoot Toad (Spea bombifrons).
    Garcia NW; Pfennig KS; Burmeister SS
    PLoS One; 2015; 10(4):e0125981. PubMed ID: 25919309
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Influence of sprint speed and body size on predator avoidance in New Mexican spadefoot toads (Spea multiplicata).
    Arendt JD
    Oecologia; 2009 Mar; 159(2):455-61. PubMed ID: 18987891
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Conservation Genomics of the Threatened Western Spadefoot, Spea hammondii, in Urbanized Southern California.
    Neal KM; Fisher RN; Mitrovich MJ; Shaffer HB
    J Hered; 2020 Dec; 111(7):613-627. PubMed ID: 33245338
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Social signals increase monoamine levels in the tegmentum of juvenile Mexican spadefoot toads (Spea multiplicata).
    Rodriguez Moncalvo VG; Burmeister SS; Pfennig KS
    J Comp Physiol A Neuroethol Sens Neural Behav Physiol; 2013 Aug; 199(8):681-91. PubMed ID: 23681220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Harnessing landscape genomics to identify future climate resilient genotypes in a desert annual.
    Shryock DF; Washburn LK; DeFalco LA; Esque TC
    Mol Ecol; 2021 Feb; 30(3):698-717. PubMed ID: 33007116
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facilitative interaction promotes occupancy of a desert amphibian across a climate gradient.
    Smith MM; Goldberg CS
    Oecologia; 2022 Mar; 198(3):815-823. PubMed ID: 35188593
    [TBL] [Abstract][Full Text] [Related]  

  • 27. When to start and when to stop: Effects of climate on breeding in a multi-brooded songbird.
    Lv L; Liu Y; Osmond HL; Cockburn A; Kruuk LEB
    Glob Chang Biol; 2020 Feb; 26(2):443-457. PubMed ID: 31581368
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sexual selection in female perceptual space: how female túngara frogs perceive and respond to complex population variation in acoustic mating signals.
    Ryan MJ; Rand AS
    Evolution; 2003 Nov; 57(11):2608-18. PubMed ID: 14686535
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Seasonal differences in climate change explain a lack of multi-decadal shifts in population characteristics of a pond breeding salamander.
    Kirk MA; Galatowitsch ML; Wissinger SA
    PLoS One; 2019; 14(9):e0222097. PubMed ID: 31491025
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Diet alters species recognition in juvenile toads.
    Pfennig KS; Rodriguez Moncalvo VG; Burmeister SS
    Biol Lett; 2013 Oct; 9(5):20130599. PubMed ID: 24088562
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal tolerance and the importance of microhabitats for Andean frogs in the context of land use and climate change.
    González-Del-Pliego P; Scheffers BR; Freckleton RP; Basham EW; Araújo MB; Acosta-Galvis AR; Medina Uribe CA; Haugaasen T; Edwards DP
    J Anim Ecol; 2020 Nov; 89(11):2451-2460. PubMed ID: 32745275
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Elevated mutation rates are unlikely to evolve in sexual species, not even under rapid environmental change.
    Romero-Mujalli D; Jeltsch F; Tiedemann R
    BMC Evol Biol; 2019 Aug; 19(1):175. PubMed ID: 31462290
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Development and characterization of nine polymorphic microsatellite markers for Mexican spadefoot toads (Spea multiplicata) with cross-amplification in Plains spadefoot toads (S. bombifrons).
    Rice AM; Pearse DE; Becker T; Newman RA; Lebonville C; Harper GR; Pfennig KS
    Mol Ecol Resour; 2008 Nov; 8(6):1386-9. PubMed ID: 21586053
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Evidence for evolutionary change associated with the recent range expansion of the British butterfly, Aricia agestis, in response to climate change.
    Buckley J; Butlin RK; Bridle JR
    Mol Ecol; 2012 Jan; 21(2):267-80. PubMed ID: 22118243
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming.
    Davies ZG; Wilson RJ; Coles S; Thomas CD
    J Anim Ecol; 2006 Jan; 75(1):247-56. PubMed ID: 16903062
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Amphibian breeding phenology trends under climate change: predicting the past to forecast the future.
    Green DM
    Glob Chang Biol; 2017 Feb; 23(2):646-656. PubMed ID: 27273300
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Climate change and nesting behaviour in vertebrates: a review of the ecological threats and potential for adaptive responses.
    Mainwaring MC; Barber I; Deeming DC; Pike DA; Roznik EA; Hartley IR
    Biol Rev Camb Philos Soc; 2017 Nov; 92(4):1991-2002. PubMed ID: 27982504
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Habitat-specific differences alter traditional biogeographic patterns of life history in a climate-change induced range expansion.
    Riley ME; Griffen BD
    PLoS One; 2017; 12(5):e0176263. PubMed ID: 28472189
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Does adaptation to historical climate shape plant responses to future rainfall patterns? A rainfall manipulation experiment with common ragweed.
    Gorton AJ; Tiffin P; Moeller DA
    Oecologia; 2019 Aug; 190(4):941-953. PubMed ID: 31289920
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Anticipating changes in wildlife habitat induced by private forest owners' adaptation to climate change and carbon policy.
    Hashida Y; Withey J; Lewis DJ; Newman T; Kline JD
    PLoS One; 2020; 15(4):e0230525. PubMed ID: 32240191
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.