These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36525087)

  • 1. The mechanism of nanoparticle toxicity to cyanobacteria.
    Kumar M; Sabu S; Sangela V; Meena M; Rajput VD; Minkina T; Vinayak V; Harish
    Arch Microbiol; 2022 Dec; 205(1):30. PubMed ID: 36525087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toxicity evaluation of iron oxide nanoparticles to freshwater cyanobacteria Nostoc ellipsosporum.
    Kumar M; Seth K; Choudhary S; Kumawat G; Nigam S; Joshi G; Saharan V; Meena M; Gupta AK; Harish
    Environ Sci Pollut Res Int; 2023 Apr; 30(19):55742-55755. PubMed ID: 36905545
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding Nanoparticle Toxicity Mechanisms To Inform Redesign Strategies To Reduce Environmental Impact.
    Buchman JT; Hudson-Smith NV; Landy KM; Haynes CL
    Acc Chem Res; 2019 Jun; 52(6):1632-1642. PubMed ID: 31181913
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Toxicity mechanism of cerium oxide nanoparticles on cyanobacteria Microcystis aeruginosa and their ecological risks.
    Wu D; Zhang J; Du W; Yin Y; Guo H
    Environ Sci Pollut Res Int; 2022 May; 29(23):34010-34018. PubMed ID: 35031986
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fate and risks of nanomaterials in aquatic and terrestrial environments.
    Batley GE; Kirby JK; McLaughlin MJ
    Acc Chem Res; 2013 Mar; 46(3):854-62. PubMed ID: 22759090
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of nanotoxicity in
    Saxena P; Saharan V; Baroliya PK; Gour VS; Rai MK; Harish
    Toxicol Rep; 2021; 8():724-731. PubMed ID: 33868956
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Approach to using mechanism-based structure activity relationship (SAR) analysis to assess human health hazard potential of nanomaterials.
    Lai DY
    Food Chem Toxicol; 2015 Nov; 85():120-6. PubMed ID: 26111809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The influence of dissolved and surface-bound humic acid on the toxicity of TiO₂ nanoparticles to Chlorella sp.
    Lin D; Ji J; Long Z; Yang K; Wu F
    Water Res; 2012 Sep; 46(14):4477-87. PubMed ID: 22704133
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanoparticles toxicity: an overview of its mechanism and plausible mitigation strategies.
    Sharma N; Kurmi BD; Singh D; Mehan S; Khanna K; Karwasra R; Kumar S; Chaudhary A; Jakhmola V; Sharma A; Singh SK; Dua K; Kakkar D
    J Drug Target; 2024 Jun; 32(5):457-469. PubMed ID: 38328920
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanoparticle Toxicology.
    Yang W; Wang L; Mettenbrink EM; DeAngelis PL; Wilhelm S
    Annu Rev Pharmacol Toxicol; 2021 Jan; 61():269-289. PubMed ID: 32841092
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Therapeutic nanostructures and nanotoxicity.
    Sarma A; Bania R; Devi JR; Deka S
    J Appl Toxicol; 2021 Oct; 41(10):1494-1517. PubMed ID: 33641187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabricated nanoparticles: current status and potential phytotoxic threats.
    Yadav T; Mungray AA; Mungray AK
    Rev Environ Contam Toxicol; 2014; 230():83-110. PubMed ID: 24609519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanoparticles considered as mixtures for toxicological research.
    Deng H; Zhang Y; Yu H
    J Environ Sci Health C Environ Carcinog Ecotoxicol Rev; 2018 Jan; 36(1):1-20. PubMed ID: 29313413
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Antibacterial activity of γFe
    Madany P; Xia C; Bhattacharjee L; Khan N; Li R; Liu J
    Water Environ Res; 2021 Nov; 93(11):2807-2818. PubMed ID: 34520086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Toxicity Assessment in the Nanoparticle Era.
    De Matteis V; Rinaldi R
    Adv Exp Med Biol; 2018; 1048():1-19. PubMed ID: 29453529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The impact of engineered nanomaterials on the environment: Release mechanism, toxicity, transformation, and remediation.
    Vineeth Kumar CM; Karthick V; Kumar VG; Inbakandan D; Rene ER; Suganya KSU; Embrandiri A; Dhas TS; Ravi M; Sowmiya P
    Environ Res; 2022 Sep; 212(Pt B):113202. PubMed ID: 35398077
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Algae-mediated biosystems for metallic nanoparticle production: From synthetic mechanisms to aquatic environmental applications.
    Li SN; Wang R; Ho SH
    J Hazard Mater; 2021 Oct; 420():126625. PubMed ID: 34329084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Environmental risks of ZnO nanoparticle exposure on Microcystis aeruginosa: Toxic effects and environmental feedback.
    Tang Y; Xin H; Yang S; Guo M; Malkoske T; Yin D; Xia S
    Aquat Toxicol; 2018 Nov; 204():19-26. PubMed ID: 30170208
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Impact of solar UV radiation on toxicity of ZnO nanoparticles through photocatalytic reactive oxygen species (ROS) generation and photo-induced dissolution.
    Ma H; Wallis LK; Diamond S; Li S; Canas-Carrell J; Parra A
    Environ Pollut; 2014 Oct; 193():165-172. PubMed ID: 25033018
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review on the generation, discharge, distribution, environmental behavior, and toxicity (especially to microbial aggregates) of nano-TiO
    Li K; Xu D; Liao H; Xue Y; Sun M; Su H; Xiu X; Zhao T
    Sci Total Environ; 2022 Jun; 824():153866. PubMed ID: 35181357
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.