These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 36525186)

  • 1. Improved chimpanzee algorithm based on CEEMDAN combination to optimize ELM short-term wind speed prediction.
    Sun W; Wang X
    Environ Sci Pollut Res Int; 2023 Mar; 30(12):35115-35126. PubMed ID: 36525186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of hybrid model based on CEEMDAN, SVD, PSO to wind energy prediction.
    Zhang Y; Chen Y
    Environ Sci Pollut Res Int; 2022 Mar; 29(15):22661-22674. PubMed ID: 34797536
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization scheme of wind energy prediction based on artificial intelligence.
    Zhang Y; Li R; Zhang J
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):39966-39981. PubMed ID: 33763837
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A novel model based on CEEMDAN, IWOA, and LSTM for ultra-short-term wind power forecasting.
    Yang S; Yuan A; Yu Z
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):11689-11705. PubMed ID: 36098919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A new hybrid prediction model of PM
    Yang H; Zhao J; Li G
    Environ Sci Pollut Res Int; 2022 Sep; 29(44):67214-67241. PubMed ID: 35524096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A new hybrid prediction model of air quality index based on secondary decomposition and improved kernel extreme learning machine.
    Li G; Tang Y; Yang H
    Chemosphere; 2022 Oct; 305():135348. PubMed ID: 35718028
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A new hybrid optimization prediction model for PM2.5 concentration considering other air pollutants and meteorological conditions.
    Yang H; Liu Z; Li G
    Chemosphere; 2022 Nov; 307(Pt 3):135798. PubMed ID: 35964719
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-step interval prediction of ultra-short-term wind power based on CEEMDAN-FIG and CNN-BiLSTM.
    Zhao Z; Nan H; Liu Z; Yu Y
    Environ Sci Pollut Res Int; 2022 Aug; 29(38):58097-58109. PubMed ID: 35362890
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An innovative forecasting model to predict wind energy.
    Zhang Y; Wang S
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):74602-74618. PubMed ID: 35639315
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A multi-scale evolutionary deep learning model based on CEEMDAN, improved whale optimization algorithm, regularized extreme learning machine and LSTM for AQI prediction.
    Ji C; Zhang C; Hua L; Ma H; Nazir MS; Peng T
    Environ Res; 2022 Dec; 215(Pt 1):114228. PubMed ID: 36084674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design and implementation of a hybrid model based on two-layer decomposition method coupled with extreme learning machines to support real-time environmental monitoring of water quality parameters.
    Fijani E; Barzegar R; Deo R; Tziritis E; Skordas K
    Sci Total Environ; 2019 Jan; 648():839-853. PubMed ID: 30138884
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-altitude small target detection in sea clutter background based on improved CEEMDAN-IZOA-ELM.
    Shang S; Zhu J; Liu Q; Shi Y; Qiao T
    Heliyon; 2024 Feb; 10(4):e26500. PubMed ID: 38420380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long, short, and medium terms wind speed prediction model based on LSTM optimized by improved moth flame optimization algorithm.
    Li R; Wang J; Li J; Kou M
    Environ Sci Pollut Res Int; 2024 May; 31(25):37256-37282. PubMed ID: 38771541
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A novel combined intelligent algorithm prediction model for the tunnel surface settlement.
    Wang Y; Dai F; Jia R; Wang R; Sharifi H; Wang Z
    Sci Rep; 2023 Jun; 13(1):9845. PubMed ID: 37330536
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Short-term wind speed prediction based on FEEMD-PE-SSA-BP.
    Zhu T; Wang W; Yu M
    Environ Sci Pollut Res Int; 2022 Nov; 29(52):79288-79305. PubMed ID: 35710968
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on renewable energy prediction technology: empirical analysis for Argentina and China.
    Li G; Wang J; Qi Z; Wang T; Ren Y; Zhang Y; Li G
    Environ Sci Pollut Res Int; 2023 Feb; 30(8):21225-21237. PubMed ID: 36269484
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A hybrid prediction model for forecasting wind energy resources.
    Zhang Y; Pan G
    Environ Sci Pollut Res Int; 2020 Jun; 27(16):19428-19446. PubMed ID: 32215801
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-term wind speed prediction based on improved Hilbert-Huang transform method coupled with NAR dynamic neural network model.
    Chen J; Guo Z; Zhang L; Zhang S
    Sci Rep; 2024 Jan; 14(1):617. PubMed ID: 38182873
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wind speed prediction based on CEEMD-SE and multiple echo state network with Gauss-Markov fusion.
    Lian L
    Rev Sci Instrum; 2022 Jan; 93(1):015105. PubMed ID: 35104944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Short-term wind speed prediction using hybrid machine learning techniques.
    Gupta D; Natarajan N; Berlin M
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):50909-50927. PubMed ID: 34251573
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.