These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
187 related articles for article (PubMed ID: 36525379)
1. Excipient-Free Ionizable Polyester Nanoparticles for Lung-Selective and Innate Immune Cell Plasmid DNA and mRNA Transfection. Chakraborty A; Dharmaraj S; Truong N; Pearson RM ACS Appl Mater Interfaces; 2022 Dec; 14(51):56440-56453. PubMed ID: 36525379 [TBL] [Abstract][Full Text] [Related]
2. Polymers for nucleic acid transfer-an overview. Wagner E Adv Genet; 2014; 88():231-61. PubMed ID: 25409608 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and application of poly(ethylene glycol)-co-poly(β-amino ester) copolymers for small cell lung cancer gene therapy. Kim J; Kang Y; Tzeng SY; Green JJ Acta Biomater; 2016 Sep; 41():293-301. PubMed ID: 27262740 [TBL] [Abstract][Full Text] [Related]
4. Nucleic Acid Delivery by Solid Lipid Nanoparticles Containing Switchable Lipids: Plasmid DNA vs. Messenger RNA. Gómez-Aguado I; Rodríguez-Castejón J; Vicente-Pascual M; Rodríguez-Gascón A; Pozo-Rodríguez AD; Solinís Aspiazu MÁ Molecules; 2020 Dec; 25(24):. PubMed ID: 33352904 [TBL] [Abstract][Full Text] [Related]
5. Intracellular Availability of pDNA and mRNA after Transfection: A Comparative Study among Polyplexes, Lipoplexes, and Lipopolyplexes. Gonçalves C; Akhter S; Pichon C; Midoux P Mol Pharm; 2016 Sep; 13(9):3153-63. PubMed ID: 27486998 [TBL] [Abstract][Full Text] [Related]
6. In vivo gene delivery with L-tyrosine polyphosphate nanoparticles. Ditto AJ; Reho JJ; Shah KN; Smolen JA; Holda JH; Ramirez RJ; Yun YH Mol Pharm; 2013 May; 10(5):1836-44. PubMed ID: 23510151 [TBL] [Abstract][Full Text] [Related]
7. Efficient topical delivery of plasmid DNA to lung in vivo mediated by putative triggered, PEGylated pDNA nanoparticles. Aissaoui A; Chami M; Hussein M; Miller AD J Control Release; 2011 Sep; 154(3):275-84. PubMed ID: 21699935 [TBL] [Abstract][Full Text] [Related]
8. PEGylation improves nanoparticle formation and transfection efficiency of messenger RNA. Uzgün S; Nica G; Pfeifer C; Bosinco M; Michaelis K; Lutz JF; Schneider M; Rosenecker J; Rudolph C Pharm Res; 2011 Sep; 28(9):2223-32. PubMed ID: 21594715 [TBL] [Abstract][Full Text] [Related]
9. Modulating efficacy and cytotoxicity of lipoamino fatty acid nucleic acid carriers using disulfide or hydrophobic spacers. Steffens RC; Thalmayr S; Weidinger E; Seidl J; Folda P; Höhn M; Wagner E Nanoscale; 2024 Jul; 16(29):13988-14005. PubMed ID: 38984864 [TBL] [Abstract][Full Text] [Related]
10. Serum-Independent Nonviral Gene Delivery to Innate and Adaptive Immune Cells Using Immunoplexes. Chakraborty A; Lasola JJM; Truong N; Pearson RM ACS Appl Bio Mater; 2020 Sep; 3(9):6263-6272. PubMed ID: 34604713 [TBL] [Abstract][Full Text] [Related]
11. Polyethylenimine-based amphiphilic core-shell nanoparticles: study of gene delivery and intracellular trafficking. Siu YS; Li L; Leung MF; Lee KL; Li P Biointerphases; 2012 Dec; 7(1-4):16. PubMed ID: 22589059 [TBL] [Abstract][Full Text] [Related]
12. Correlation of mRNA delivery timing and protein expression in lipid-based transfection. Reiser A; Woschée D; Mehrotra N; Krzysztoń R; Strey HH; Rädler JO Integr Biol (Camb); 2019 Dec; 11(9):362-371. PubMed ID: 31850498 [TBL] [Abstract][Full Text] [Related]
13. Preparation, characterization and transfection efficiency of cationic PEGylated PLA nanoparticles as gene delivery systems. Chen J; Tian B; Yin X; Zhang Y; Hu D; Hu Z; Liu M; Pan Y; Zhao J; Li H; Hou C; Wang J; Zhang Y J Biotechnol; 2007 Jun; 130(2):107-13. PubMed ID: 17467097 [TBL] [Abstract][Full Text] [Related]
14. Contribution of hydrophobic/hydrophilic modification on cationic chains of poly(ε-caprolactone)-graft-poly(dimethylamino ethylmethacrylate) amphiphilic co-polymer in gene delivery. Han S; Wan H; Lin D; Guo S; Dong H; Zhang J; Deng L; Liu R; Tang H; Dong A Acta Biomater; 2014 Feb; 10(2):670-9. PubMed ID: 24096149 [TBL] [Abstract][Full Text] [Related]