These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

86 related articles for article (PubMed ID: 365255)

  • 1. The conformation of the anticodon loop of yeast tRNAPhe in solution and on ribosomes.
    Odom OW; Craig BB; Hardesty BA
    Biopolymers; 1978 Dec; 17(12):2909-31. PubMed ID: 365255
    [No Abstract]   [Full Text] [Related]  

  • 2. Minor conformational changes of yeast tRNAPhe anticodon loop occur upon aminoacylation as indicated by Y base fluorescence.
    Okabe N; Cramer F
    J Biochem; 1981 May; 89(5):1439-43. PubMed ID: 7024259
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the constant uridine in binding of yeast tRNAPhe anticodon arm to 30S ribosomes.
    Uhlenbeck OC; Lowary PT; Wittenberg WL
    Nucleic Acids Res; 1982 Jun; 10(11):3341-52. PubMed ID: 7048255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Raman spectral studies of nucleic acids. XI. Conformations of yeast tRNAPhe and E. coli ribosomal RNA in aqueous solution and in the solid state.
    Chen MC; Thomas GJ
    Biopolymers; 1974; 13(3):615-26. PubMed ID: 4598338
    [No Abstract]   [Full Text] [Related]  

  • 5. The conformation of the tRNAPhe anticodon loop monitored by fluorescence.
    Wells BD
    Nucleic Acids Res; 1984 Feb; 12(4):2157-70. PubMed ID: 6366743
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Loop formation in polynucleotide chains. II. Flexibility of the anticodon loop of tRNAPhe.
    Marky NL; Olson WK
    Biopolymers; 1987 Mar; 26(3):415-38. PubMed ID: 3646072
    [No Abstract]   [Full Text] [Related]  

  • 7. The solution structure of a RNA pentadecamer comprising the anticodon loop and stem of yeast tRNAPhe. A 500 MHz 1H-n.m.r. study.
    Clore GM; Gronenborn AM; Piper EA; McLaughlin LW; Graeser E; van Boom JH
    Biochem J; 1984 Aug; 221(3):737-51. PubMed ID: 6089745
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Crystallographic refinement of yeast aspartic acid transfer RNA.
    Westhof E; Dumas P; Moras D
    J Mol Biol; 1985 Jul; 184(1):119-45. PubMed ID: 3897553
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The structure of the anticodon loop of tRNAPhe from yeast as deduced from spectroscopic studies on oligonucleotides.
    Maelicke A; von der Haar F; Sprinzl M; Cramer F
    Biopolymers; 1975 Jan; 14(1):155-71. PubMed ID: 1100138
    [No Abstract]   [Full Text] [Related]  

  • 10. A novel conformational change of the anticodon region of tRNAPhe (yeast).
    Urbanke C; Maass G
    Nucleic Acids Res; 1978 May; 5(5):1551-60. PubMed ID: 351565
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Topological arrangement of two transfer RNAs on the ribosome. Fluorescence energy transfer measurements between A and P site-bound tRNAphe.
    Paulsen H; Robertson JM; Wintermeyer W
    J Mol Biol; 1983 Jun; 167(2):411-26. PubMed ID: 6345795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optically detected magnetic resonance of Escherichia coli glutamic acid specific transfer ribonucleic acid and its anticodon-anticodon complex with yeast phenylalanine-specific transfer ribonucleic acid.
    Taherian MR; Luk KF; Maki AH
    Biochemistry; 1984 Dec; 23(26):6614-8. PubMed ID: 6085008
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anticodon loop of tRNAPhe: structure, dynamics, and Mg2+ binding.
    Bujalowski W; Graeser E; McLaughlin LW; Proschke D
    Biochemistry; 1986 Oct; 25(21):6365-71. PubMed ID: 3539189
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A structurally modified yeast tRNAPhe with six nucleotides in the anticodon loop lacks significant phenylalanine acceptance.
    Nishikawa K; Hecht SM
    J Biol Chem; 1982 Sep; 257(18):10536-9. PubMed ID: 7050115
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enzymatic 2'-O-methylation of the wobble nucleoside of eukaryotic tRNAPhe: specificity depends on structural elements outside the anticodon loop.
    Droogmans L; Haumont E; de Henau S; Grosjean H
    EMBO J; 1986 May; 5(5):1105-9. PubMed ID: 3522221
    [TBL] [Abstract][Full Text] [Related]  

  • 16. [Characterization of fluorescent derivatives of tRNA Phe by experiments in the ribosomal system].
    Bintermaĭer V; Tsakhau GG
    Mol Biol (Mosk); 1975; 9(1):63-9. PubMed ID: 768743
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A distinctive RNA fold: the solution structure of an analogue of the yeast tRNAPhe T Psi C domain.
    Koshlap KM; Guenther R; Sochacka E; Malkiewicz A; Agris PF
    Biochemistry; 1999 Jul; 38(27):8647-56. PubMed ID: 10393540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fluorescence detected circular dichroism study of the anticodon loop of yeast tRNAPhe.
    Turner DH; Tinoco I; Maestre MF
    Biochemistry; 1975 Aug; 14(17):3794-9. PubMed ID: 1100099
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nuclear magnetic resonance studies on yeast tRNAPhe. II. Assignment of the iminoproton resonances of the anticodon and T stem by means of nuclear Overhauser effect experiments at 500 MHz.
    Heerschap A; Haasnoot CA; Hilbers CW
    Nucleic Acids Res; 1983 Jul; 11(13):4483-99. PubMed ID: 6346268
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Conformational dynamics of the anticodon loop in yeast tRNAPhe as sensed by the fluorescence of wybutine.
    Claesens F; Rigler R
    Eur Biophys J; 1986; 13(6):331-42. PubMed ID: 3530734
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.