BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 36525503)

  • 21. Early evolution of membrane lipids: how did the lipid divide occur?
    Koga Y
    J Mol Evol; 2011 Mar; 72(3):274-82. PubMed ID: 21259003
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Archaeal lipids.
    Řezanka T; Kyselová L; Murphy DJ
    Prog Lipid Res; 2023 Jul; 91():101237. PubMed ID: 37236370
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of a protein responsible for the synthesis of archaeal membrane-spanning GDGT lipids.
    Zeng Z; Chen H; Yang H; Chen Y; Yang W; Feng X; Pei H; Welander PV
    Nat Commun; 2022 Mar; 13(1):1545. PubMed ID: 35318330
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Glycerol monoalkanediol diethers: a novel series of archaeal lipids detected in hydrothermal environments.
    Bauersachs T; Schwark L
    Rapid Commun Mass Spectrom; 2016 Jan; 30(1):54-60. PubMed ID: 26661970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Certain, but Not All, Tetraether Lipids from the Thermoacidophilic Archaeon
    Bonanno A; Chong PL
    Int J Mol Sci; 2021 Nov; 22(23):. PubMed ID: 34884746
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations.
    Koga Y; Morii H
    Microbiol Mol Biol Rev; 2007 Mar; 71(1):97-120. PubMed ID: 17347520
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Phylogenomic investigation of phospholipid synthesis in archaea.
    Lombard J; López-García P; Moreira D
    Archaea; 2012; 2012():630910. PubMed ID: 23304072
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Isoprenoid biosynthesis in Archaea--biochemical and evolutionary implications.
    Matsumi R; Atomi H; Driessen AJ; van der Oost J
    Res Microbiol; 2011 Jan; 162(1):39-52. PubMed ID: 21034816
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Molecular dynamics simulation study of the effect of glycerol dialkyl glycerol tetraether hydroxylation on membrane thermostability.
    Huguet C; Fietz S; Rosell-Melé A; Daura X; Costenaro L
    Biochim Biophys Acta Biomembr; 2017 May; 1859(5):966-974. PubMed ID: 28214513
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A re-evaluation of the archaeal membrane lipid biosynthetic pathway.
    Villanueva L; Damsté JS; Schouten S
    Nat Rev Microbiol; 2014 Jun; 12(6):438-48. PubMed ID: 24801941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Archaeal and bacterial glycerol dialkyl glycerol tetraether lipids in hot springs of yellowstone national park.
    Schouten S; van der Meer MT; Hopmans EC; Rijpstra WI; Reysenbach AL; Ward DM; Sinninghe Damsté JS
    Appl Environ Microbiol; 2007 Oct; 73(19):6181-91. PubMed ID: 17693566
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Thermal adaptation of the archaeal and bacterial lipid membranes.
    Koga Y
    Archaea; 2012; 2012():789652. PubMed ID: 22927779
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crossing the lipid divide.
    Sohlenkamp C
    J Biol Chem; 2021 Jul; 297(1):100859. PubMed ID: 34097872
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Discovery, structure and mechanism of a tetraether lipid synthase.
    Lloyd CT; Iwig DF; Wang B; Cossu M; Metcalf WW; Boal AK; Booker SJ
    Nature; 2022 Sep; 609(7925):197-203. PubMed ID: 35882349
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Widespread occurrence of structurally diverse tetraether membrane lipids: evidence for the ubiquitous presence of low-temperature relatives of hyperthermophiles.
    Schouten S; Hopmans EC; Pancost RD; Damste JS
    Proc Natl Acad Sci U S A; 2000 Dec; 97(26):14421-6. PubMed ID: 11121044
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Structural complexity in isoprenoid glycerol dialkyl glycerol tetraether lipid cores of Sulfolobus and other archaea revealed by liquid chromatography-tandem mass spectrometry.
    Knappy CS; Barillà D; de Blaquiere JP; Morgan HW; Nunn CE; Suleman M; Tan CH; Keely BJ
    Chem Phys Lipids; 2012 Sep; 165(6):648-55. PubMed ID: 22776323
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Biosynthesis of Hybrid Neutral Lipids with Archaeal and Eukaryotic Characteristics in Engineered Saccharomyces cerevisiae.
    Zhang J; Li T; Hong Z; Ma C; Fang X; Zheng F; Teng W; Zhang C; Si T
    Angew Chem Int Ed Engl; 2023 Jan; 62(4):e202214344. PubMed ID: 36424352
    [TBL] [Abstract][Full Text] [Related]  

  • 38. From promiscuity to the lipid divide: on the evolution of distinct membranes in Archaea and Bacteria.
    Koga Y
    J Mol Evol; 2014 Apr; 78(3-4):234-42. PubMed ID: 24573438
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mono- to tetra-alkyl ether cardiolipins in a mesophilic, sulfate-reducing bacterium identified by UHPLC-HRMS
    Hopmans EC; Grossi V; Sahonero-Canavesi DX; Bale NJ; Cravo-Laureau C; Sinninghe Damsté JS
    Front Microbiol; 2024; 15():1404328. PubMed ID: 38841066
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Recent advances in structural research on ether lipids from archaea including comparative and physiological aspects.
    Koga Y; Morii H
    Biosci Biotechnol Biochem; 2005 Nov; 69(11):2019-34. PubMed ID: 16306681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.