These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 36525637)

  • 1. Development of a microfluidic electroosmosis pump on a chip for steady and continuous fluid delivery.
    Silverio V; Canane PAG; Martins TA; Afonso R; Cardoso S; Batista E
    Biomed Tech (Berl); 2023 Feb; 68(1):79-90. PubMed ID: 36525637
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A smart and portable micropump for stable liquid delivery.
    Zhang X; Xia K; Ji A; Xiang N
    Electrophoresis; 2019 Mar; 40(6):865-872. PubMed ID: 30628114
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Portable and integrated microfluidic flow control system using off-the-shelf components towards organs-on-chip applications.
    Zhu H; Özkayar G; Lötters J; Tichem M; Ghatkesar MK
    Biomed Microdevices; 2023 Jun; 25(2):19. PubMed ID: 37266714
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Micropump based on electroosmosis of the second kind.
    Mishchuk NA; Heldal T; Volden T; Auerswald J; Knapp H
    Electrophoresis; 2009 Oct; 30(20):3499-506. PubMed ID: 19784952
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Critical design parameters to develop biomimetic organ-on-a-chip models for the evaluation of the safety and efficacy of nanoparticles.
    Abdelkarim M; Perez-Davalos L; Abdelkader Y; Abostait A; Labouta HI
    Expert Opin Drug Deliv; 2023 Jan; 20(1):13-30. PubMed ID: 36440475
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-performance, low-voltage electroosmotic pumps with molecularly thin silicon nanomembranes.
    Snyder JL; Getpreecharsawas J; Fang DZ; Gaborski TR; Striemer CC; Fauchet PM; Borkholder DA; McGrath JL
    Proc Natl Acad Sci U S A; 2013 Nov; 110(46):18425-30. PubMed ID: 24167263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic use of electroosmotic flow and magnetic forces for nucleic acid extraction.
    Deraney RN; Schneider L; Tripathi A
    Analyst; 2020 Mar; 145(6):2412-2419. PubMed ID: 32057055
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Optimizing Microfluidic Channel Design with High-Performance Materials for Safe Neonatal Drug Delivery.
    Archana T; Nachammai N; Praveenkumar S
    Recent Adv Drug Deliv Formul; 2024; 18(4):294-303. PubMed ID: 39356100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Characterization of microparticle separation utilizing electrokinesis within an electrodeless dielectrophoresis chip.
    Chiou CH; Pan JC; Chien LJ; Lin YY; Lin JL
    Sensors (Basel); 2013 Feb; 13(3):2763-76. PubMed ID: 23447009
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-pressure open-channel on-chip electroosmotic pump for nanoflow high performance liquid chromatography.
    Wang W; Gu C; Lynch KB; Lu JJ; Zhang Z; Pu Q; Liu S
    Anal Chem; 2014 Feb; 86(4):1958-64. PubMed ID: 24495233
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Piezoelectric micropump with integrated elastomeric check valves: design, performance characterization and primary application for 3D cell culture.
    Holman JB; Zhu X; Cheng H
    Biomed Microdevices; 2023 Jan; 25(1):5. PubMed ID: 36648587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A low-voltage nano-porous electroosmotic pump.
    Ai Y; Yalcin SE; Gu D; Baysal O; Baumgart H; Qian S; Beskok A
    J Colloid Interface Sci; 2010 Oct; 350(2):465-70. PubMed ID: 20684961
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Numerical evaluation and experimental validation of fluid flow behavior within an organ-on-a-chip model.
    Carvalho V; Gonçalves IM; Rodrigues N; Sousa P; Pinto V; Minas G; Kaji H; Shin SR; Rodrigues RO; Teixeira SFCF; Lima RA
    Comput Methods Programs Biomed; 2024 Jan; 243():107883. PubMed ID: 37944399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of microfluidic two-phase flow patterns in lab-on-chip devices.
    Yang Z; Dong T; Halvorsen E
    Biomed Mater Eng; 2014; 24(1):77-83. PubMed ID: 24211885
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ultrafast high-pressure AC electro-osmotic pumps for portable biomedical microfluidics.
    Huang CC; Bazant MZ; Thorsen T
    Lab Chip; 2010 Jan; 10(1):80-5. PubMed ID: 20024054
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Joule heating effects on electroosmotic entry flow.
    Prabhakaran RA; Zhou Y; Patel S; Kale A; Song Y; Hu G; Xuan X
    Electrophoresis; 2017 Mar; 38(5):572-579. PubMed ID: 27557612
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A whole-thermoplastic microfluidic chip with integrated on-chip micropump, bioreactor and oxygenator for cell culture applications.
    Ameri AR; Imanparast A; Passandideh-Fard M; Mousavi Shaegh SA
    Anal Chim Acta; 2022 Aug; 1221():340093. PubMed ID: 35934343
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microheart: A microfluidic pump for functional vascular culture in microphysiological systems.
    Offeddu GS; Serrano JC; Chen SW; Shelton SE; Shin Y; Floryan M; Kamm RD
    J Biomech; 2021 Apr; 119():110330. PubMed ID: 33631662
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pump-less, recirculating organ-on-a-chip (rOoC) platform.
    Busek M; Aizenshtadt A; Koch T; Frank A; Delon L; Martinez MA; Golovin A; Dumas C; Stokowiec J; Gruenzner S; Melum E; Krauss S
    Lab Chip; 2023 Feb; 23(4):591-608. PubMed ID: 36655405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long range microfluidic shear device for cellular mechanotransduction studies.
    Dash SK; Verma RS; Das SK
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():3209-12. PubMed ID: 26736975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.