BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36525728)

  • 1. The mechanisms and applications of cryoprotectants in aquatic products: An overview.
    Liu Z; Yang W; Wei H; Deng S; Yu X; Huang T
    Food Chem; 2023 May; 408():135202. PubMed ID: 36525728
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The role of trifunctional cryoprotectants in the frozen storage of aquatic foods: Recent developments and future recommendations.
    Tian J; Walayat N; Ding Y; Liu J
    Compr Rev Food Sci Food Saf; 2022 Jan; 21(1):321-339. PubMed ID: 34766434
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Observation on the ice crystal formation process of large yellow croaker (Pseudosciaena crocea) and the effect of multiple cryoprotectants pre-soaking treatments on frozen quality.
    Yang Z; Ye G; Yang D; Xie J; Huo Y
    Cryobiology; 2023 Dec; 113():104580. PubMed ID: 37625476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characteristics and applications of plant-derived antifreeze proteins in frozen dough: A review.
    Obadi M; Xu B
    Int J Biol Macromol; 2024 Jan; 255():128202. PubMed ID: 37979748
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the cryoprotective mechanism and effect on quality characteristics of surimi during freezing storage by antifreeze peptides.
    Chen X; Wu J; Li X; Yang F; Yu L; Li X; Huang J; Wang S
    Food Chem; 2022 Mar; 371():131054. PubMed ID: 34555708
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Production, structure-function relationships, mechanisms, and applications of antifreeze peptides.
    Chen X; Wu J; Cai X; Wang S
    Compr Rev Food Sci Food Saf; 2021 Jan; 20(1):542-562. PubMed ID: 33443808
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Applications of Antifreeze Proteins: Practical Use of the Quality Products from Japanese Fishes.
    Mahatabuddin S; Tsuda S
    Adv Exp Med Biol; 2018; 1081():321-337. PubMed ID: 30288717
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cryoprotective Effects and Quality Maintenance of Antifreeze Proteins and Peptides on Aquatic Products: A Review.
    Fan X; Geng W; Li M; Wu Z; Ma Y; Li Z; Benjakul S; Zhao Q
    Foods; 2024 Mar; 13(6):. PubMed ID: 38540907
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative Study on the Cryoprotective Effects of Three Recombinant Antifreeze Proteins from Pichia pastoris GS115 on Hydrated Gluten Proteins during Freezing.
    Liu M; Liang Y; Zhang H; Wu G; Wang L; Qian H; Qi X
    J Agric Food Chem; 2018 Jun; 66(24):6151-6161. PubMed ID: 29863868
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Antifreeze Proteins: Novel Applications and Navigation towards Their Clinical Application in Cryobanking.
    Ekpo MD; Xie J; Hu Y; Liu X; Liu F; Xiang J; Zhao R; Wang B; Tan S
    Int J Mol Sci; 2022 Feb; 23(5):. PubMed ID: 35269780
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Antifreeze Peptide Pretreatment on Ice Crystal Size, Drip Loss, Texture, and Volatile Compounds of Frozen Carrots.
    Kong CH; Hamid N; Liu T; Sarojini V
    J Agric Food Chem; 2016 Jun; 64(21):4327-35. PubMed ID: 27138051
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects and mechanism of antifreeze peptides from silver carp scales on the freeze-thaw stability of frozen surimi.
    Chen X; Li X; Yang F; Wu J; Huang D; Huang J; Wang S
    Food Chem; 2022 Dec; 396():133717. PubMed ID: 35863175
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New insight into the mechanism by which antifreeze peptides regulate the physiological function of Streptococcus thermophilus subjected to freezing stress.
    Chen X; Wu J; Yang F; Zhou M; Wang R; Huang J; Rong Y; Liu J; Wang S
    J Adv Res; 2023 Mar; 45():127-140. PubMed ID: 35599106
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anti freeze proteins (Afp): Properties, sources and applications - A review.
    Baskaran A; Kaari M; Venugopal G; Manikkam R; Joseph J; Bhaskar PV
    Int J Biol Macromol; 2021 Oct; 189():292-305. PubMed ID: 34419548
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice Recrystallization Inhibition Is Insufficient to Explain Cryopreservation Abilities of Antifreeze Proteins.
    Sun Y; Maltseva D; Liu J; Hooker T; Mailänder V; Ramløv H; DeVries AL; Bonn M; Meister K
    Biomacromolecules; 2022 Mar; 23(3):1214-1220. PubMed ID: 35080878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Understanding the influence of carrageenan oligosaccharides and xylooligosaccharides on ice-crystal growth in peeled shrimp (Litopenaeus vannamei) during frozen storage.
    Zhang B; Zhang XL; Shen CL; Deng SG
    Food Funct; 2018 Aug; 9(8):4394-4403. PubMed ID: 30059103
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Peptidic Antifreeze Materials: Prospects and Challenges.
    Surís-Valls R; Voets IK
    Int J Mol Sci; 2019 Oct; 20(20):. PubMed ID: 31627404
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification and Evaluation of Cryoprotective Peptides from Chicken Collagen: Ice-Growth Inhibition Activity Compared to That of Type I Antifreeze Proteins in Sucrose Model Systems.
    Du L; Betti M
    J Agric Food Chem; 2016 Jun; 64(25):5232-40. PubMed ID: 27293017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Marine Antifreeze Proteins: Structure, Function, and Application to Cryopreservation as a Potential Cryoprotectant.
    Kim HJ; Lee JH; Hur YB; Lee CW; Park SH; Koo BW
    Mar Drugs; 2017 Jan; 15(2):. PubMed ID: 28134801
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Research progress on quality deterioration mechanism and control technology of frozen muscle foods.
    Du X; Wang B; Li H; Liu H; Shi S; Feng J; Pan N; Xia X
    Compr Rev Food Sci Food Saf; 2022 Nov; 21(6):4812-4846. PubMed ID: 36201389
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.