These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 36525971)

  • 1. IL-5-producing CD4
    Blomberg OS; Spagnuolo L; Garner H; Voorwerk L; Isaeva OI; van Dyk E; Bakker N; Chalabi M; Klaver C; Duijst M; Kersten K; Brüggemann M; Pastoors D; Hau CS; Vrijland K; Raeven EAM; Kaldenbach D; Kos K; Afonina IS; Kaptein P; Hoes L; Theelen WSME; Baas P; Voest EE; Beyaert R; Thommen DS; Wessels LFA; de Visser KE; Kok M
    Cancer Cell; 2023 Jan; 41(1):106-123.e10. PubMed ID: 36525971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Neoadjuvant immune checkpoint blockade triggers persistent and systemic T
    Blomberg OS; Kos K; Spagnuolo L; Isaeva OI; Garner H; Wellenstein MD; Bakker N; Duits DEM; Kersten K; Klarenbeek S; Hau CS; Kaldenbach D; Raeven EAM; Vrijland K; Kok M; de Visser KE
    Oncoimmunology; 2023; 12(1):2201147. PubMed ID: 37089449
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dendritic cell therapy augments antitumor immunity triggered by CDK4/6 inhibition and immune checkpoint blockade by unleashing systemic CD4 T-cell responses.
    Kumar A; Ramani V; Bharti V; de Lima Bellan D; Saleh N; Uzhachenko R; Shen C; Arteaga C; Richmond A; Reddy SM; Vilgelm A
    J Immunother Cancer; 2023 May; 11(5):. PubMed ID: 37230537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. T cell-eosinophil crosstalk-A new road for effective immune checkpoint blockade in breast cancer?
    Grisaru-Tal S; Munitz A
    Cancer Cell; 2023 Jan; 41(1):9-11. PubMed ID: 36525972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluating the immunologically "cold" tumor microenvironment after treatment with immune checkpoint inhibitors utilizing PET imaging of CD4 + and CD8 + T cells in breast cancer mouse models.
    Lu Y; Houson HA; Gallegos CA; Mascioni A; Jia F; Aivazian A; Song PN; Lynch SE; Napier TS; Mansur A; Larimer BM; Lapi SE; Hanker AB; Sorace AG
    Breast Cancer Res; 2024 Jun; 26(1):104. PubMed ID: 38918836
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vectorized Treg-depleting αCTLA-4 elicits antigen cross-presentation and CD8
    Semmrich M; Marchand JB; Fend L; Rehn M; Remy C; Holmkvist P; Silvestre N; Svensson C; Kleinpeter P; Deforges J; Junghus F; Cleary KL; Bodén M; Mårtensson L; Foloppe J; Teige I; Quéméneur E; Frendéus B
    J Immunother Cancer; 2022 Jan; 10(1):. PubMed ID: 35058324
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Combination of radiation therapy, bempegaldesleukin, and checkpoint blockade eradicates advanced solid tumors and metastases in mice.
    Pieper AA; Rakhmilevich AL; Spiegelman DV; Patel RB; Birstler J; Jin WJ; Carlson PM; Charych DH; Hank JA; Erbe AK; Overwijk WW; Morris ZS; Sondel PM
    J Immunother Cancer; 2021 Jun; 9(6):. PubMed ID: 34172518
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Th17-inducing dendritic cell vaccines stimulate effective CD4 T cell-dependent antitumor immunity in ovarian cancer that overcomes resistance to immune checkpoint blockade.
    Luo Y; Shreeder B; Jenkins JW; Shi H; Lamichhane P; Zhou K; Bahr DA; Kurian S; Jones KA; Daum JI; Dutta N; Necela BM; Cannon MJ; Block MS; Knutson KL
    J Immunother Cancer; 2023 Nov; 11(11):. PubMed ID: 37918918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CDK4/6 inhibition promotes immune infiltration in ovarian cancer and synergizes with PD-1 blockade in a B cell-dependent manner.
    Zhang QF; Li J; Jiang K; Wang R; Ge JL; Yang H; Liu SJ; Jia LT; Wang L; Chen BL
    Theranostics; 2020; 10(23):10619-10633. PubMed ID: 32929370
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparing syngeneic and autochthonous models of breast cancer to identify tumor immune components that correlate with response to immunotherapy in breast cancer.
    Lal JC; Townsend MG; Mehta AK; Oliwa M; Miller E; Sotayo A; Cheney E; Mittendorf EA; Letai A; Guerriero JL
    Breast Cancer Res; 2021 Aug; 23(1):83. PubMed ID: 34353349
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Testing of Chemotherapy and Immune Checkpoint Blockade in Preclinical Cancer Models Identifies Additive Combinations.
    Principe N; Aston WJ; Hope DE; Tilsed CM; Fisher SA; Boon L; Dick IM; Chin WL; McDonnell AM; Nowak AK; Lake RA; Chee J; Lesterhuis WJ
    Front Immunol; 2022; 13():872295. PubMed ID: 35634282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of tumor resistance to immune checkpoint blockade and combination strategies to overcome resistance.
    Zhou X; Ni Y; Liang X; Lin Y; An B; He X; Zhao X
    Front Immunol; 2022; 13():915094. PubMed ID: 36189283
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomarkers of Immune Checkpoint Blockade Response in Triple-Negative Breast Cancer.
    Isaacs J; Anders C; McArthur H; Force J
    Curr Treat Options Oncol; 2021 Mar; 22(5):38. PubMed ID: 33743085
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The interplay between eosinophils and T cells in breast cancer immunotherapy.
    Zerdes I; Matikas A; Foukakis T
    Mol Oncol; 2023 Apr; 17(4):545-547. PubMed ID: 36892326
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CD4+ T cells induce rejection of urothelial tumors after immune checkpoint blockade.
    Sato Y; Bolzenius JK; Eteleeb AM; Su X; Maher CA; Sehn JK; Arora VK
    JCI Insight; 2018 Dec; 3(23):. PubMed ID: 30518683
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical role for IL-4 in the development of transplant arteriosclerosis in the absence of CD40-CD154 costimulation.
    Ensminger SM; Spriewald BM; Sorensen HV; Witzke O; Flashman EG; Bushell A; Morris PJ; Rose ML; Rahemtulla A; Wood KJ
    J Immunol; 2001 Jul; 167(1):532-41. PubMed ID: 11418692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutralizing IL-8 potentiates immune checkpoint blockade efficacy for glioma.
    Liu H; Zhao Q; Tan L; Wu X; Huang R; Zuo Y; Chen L; Yang J; Zhang ZX; Ruan W; Wu J; He F; Fang Y; Mao F; Zhang P; Zhang X; Yin P; Yan Z; Xu W; Lu H; Li Q; Liang M; Jia Y; Chen C; Xu S; Shi Y; Ping YF; Duan GJ; Yao XH; Han Z; Pang T; Cui Y; Zhang X; Zhu B; Qi C; Wang Y; Lv SQ; Bian XW; Liu X
    Cancer Cell; 2023 Apr; 41(4):693-710.e8. PubMed ID: 36963400
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Red blood cell-based vaccines for ameliorating cancer chemoimmunotherapy.
    Su L; Hao Y; Li R; Pan W; Ma X; Weng J; Min Y
    Acta Biomater; 2022 Dec; 154():401-411. PubMed ID: 36241013
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Eosinophils in the tumor microenvironment: implications for cancer immunotherapy.
    Ghaffari S; Rezaei N
    J Transl Med; 2023 Aug; 21(1):551. PubMed ID: 37587450
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Radiotherapy and CD40 Activation Separately Augment Immunity to Checkpoint Blockade in Cancer.
    Rech AJ; Dada H; Kotzin JJ; Henao-Mejia J; Minn AJ; Twyman-Saint Victor C; Vonderheide RH
    Cancer Res; 2018 Aug; 78(15):4282-4291. PubMed ID: 29844122
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.