These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 36526569)

  • 21. Lithium Ferrocyanide Catholyte for High-Energy and Low-cost Aqueous Redox Flow Batteries.
    Li X; Yao Y; Liu C; Jia X; Jian J; Guo B; Lu S; Qin W; Wang Q; Wu X
    Angew Chem Int Ed Engl; 2023 Jun; 62(25):e202304667. PubMed ID: 37081714
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sulfonated tryptanthrin anolyte increases performance in pH neutral aqueous redox flow batteries.
    Pinheiro D; Pineiro M; de Melo JSS
    Commun Chem; 2021 Jun; 4(1):89. PubMed ID: 36697575
    [TBL] [Abstract][Full Text] [Related]  

  • 23. PEGylation-Enabled Extended Cyclability of a Non-aqueous Redox Flow Battery.
    Chai J; Lashgari A; Cao Z; Williams CK; Wang X; Dong J; Jiang JJ
    ACS Appl Mater Interfaces; 2020 Apr; 12(13):15262-15270. PubMed ID: 32150369
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Molecular Engineering of Azobenzene-Based Anolytes Towards High-Capacity Aqueous Redox Flow Batteries.
    Zu X; Zhang L; Qian Y; Zhang C; Yu G
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22163-22170. PubMed ID: 32841494
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Physical Organic Chemistry Approach to Developing Cyclopropenium-Based Energy Storage Materials for Redox Flow Batteries.
    Walser-Kuntz R; Yan Y; Sigman M; Sanford MS
    Acc Chem Res; 2023 May; 56(10):1239-1250. PubMed ID: 37094181
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Stable Operation of Aqueous Organic Redox Flow Batteries in Air Atmosphere.
    Kong T; Liu J; Zhou X; Xu J; Xie Y; Chen J; Li X; Wang Y
    Angew Chem Int Ed Engl; 2023 Feb; 62(6):e202214819. PubMed ID: 36495124
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Molecular Engineering of Organic Species for Aqueous Redox Flow Batteries.
    Zhu F; Guo W; Fu Y
    Chem Asian J; 2023 Jan; 18(2):e202201098. PubMed ID: 36454229
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Viologen/Bromide Dual-Redox Electrochemical Capacitor with Two-Electron Reduction of Viologen.
    Luo H; Wang G; Lu J; Zhuang L; Xiao L
    ACS Appl Mater Interfaces; 2019 Nov; 11(44):41215-41221. PubMed ID: 31609584
    [TBL] [Abstract][Full Text] [Related]  

  • 29. POM Anolyte for All-Anion Redox Flow Batteries with High Capacity Retention and Coulombic Efficiency at Mild pH.
    Yang L; Hao Y; Lin J; Li K; Luo S; Lei J; Han Y; Yuan R; Liu G; Ren B; Chen J
    Adv Mater; 2022 Feb; 34(7):e2107425. PubMed ID: 34866255
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Desymmetrized hexasubstituted [3]radialene anions as aqueous organic catholytes for redox flow batteries.
    Turner NA; Freeman MB; Pratt HD; Crockett AE; Jones DS; Anstey MR; Anderson TM; Bejger CM
    Chem Commun (Camb); 2020 Mar; 56(18):2739-2742. PubMed ID: 32022001
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Development of high-voltage bipolar redox-active organic molecules through the electronic coupling of catholyte and anolyte structures.
    Tracy JS; Horst ES; Roytman VA; Toste FD
    Chem Sci; 2022 Sep; 13(36):10806-10814. PubMed ID: 36320695
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A low-cost and high-loading viologen-based organic electrode for rechargeable lithium batteries.
    Chen M; Liu L; Zhang P; Chen H
    RSC Adv; 2021 Jul; 11(39):24429-24435. PubMed ID: 35479055
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Exploring the Versatility of Membrane-Free Battery Concept Using Different Combinations of Immiscible Redox Electrolytes.
    Navalpotro P; Sierra N; Trujillo C; Montes I; Palma J; Marcilla R
    ACS Appl Mater Interfaces; 2018 Dec; 10(48):41246-41256. PubMed ID: 30398052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Simultaneous Regulation of Solvation Shell and Oriented Deposition toward a Highly Reversible Fe Anode for All-Iron Flow Batteries.
    Song Y; Yan H; Hao H; Liu Z; Yan C; Tang A
    Small; 2022 Dec; 18(49):e2204356. PubMed ID: 36310140
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Liquid Nitrobenzene-Based Anolyte Materials for High-Current and -Energy-Density Nonaqueous Redox Flow Batteries.
    Xu D; Zhang C; Zhen Y; Li Y
    ACS Appl Mater Interfaces; 2021 Aug; 13(30):35579-35584. PubMed ID: 34297540
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A high potential biphenol derivative cathode: toward a highly stable air-insensitive aqueous organic flow battery.
    Liu W; Zhao Z; Li T; Li S; Zhang H; Li X
    Sci Bull (Beijing); 2021 Mar; 66(5):457-463. PubMed ID: 36654183
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Protocol for Electrochemical Evaluations and State of Charge Diagnostics of a Symmetric Organic Redox Flow Battery.
    Duan W; Vemuri RS; Hu D; Yang Z; Wei X
    J Vis Exp; 2017 Feb; (120):. PubMed ID: 28287515
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Exploring Carbonyl Chemistry in Non-aqueous Mg Flow Batteries.
    Qin Y; Holguin K; Fehlau D; Luo C; Gao T
    Chem Asian J; 2022 Nov; 17(21):e202200587. PubMed ID: 35994590
    [TBL] [Abstract][Full Text] [Related]  

  • 39. An Fe
    Tsitovich PB; Kosswattaarachchi AM; Crawley MR; Tittiris TY; Cook TR; Morrow JR
    Chemistry; 2017 Nov; 23(61):15327-15331. PubMed ID: 28929548
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Maximizing Vanadium Deployment in Redox Flow Batteries Through Chelation.
    Waters SE; Davis CM; Thurston JR; Marshak MP
    J Am Chem Soc; 2022 Oct; 144(39):17753-17757. PubMed ID: 36130270
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.