BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 36526597)

  • 1. Research Advances in Amorphous-Crystalline Heterostructures Toward Efficient Electrochemical Applications.
    Jin Y; Zhang M; Song L; Zhang M
    Small; 2023 Mar; 19(10):e2206081. PubMed ID: 36526597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Application of Amorphous-Crystalline Coupling Materials in Electrocatalysis.
    Wang X; Yu X; He P; Qin F; Yao Y; Ren L
    Chemphyschem; 2024 Mar; 25(6):e202300761. PubMed ID: 38323329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Constructing Hierarchical CoGa
    Li J; Li S; Huang Y; Liu Z; Chen C; Ding Q; Xie H; Xu Y; Sun S; Li H
    ACS Appl Mater Interfaces; 2024 Feb; 16(6):6998-7013. PubMed ID: 38294419
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Heterostructuring Mesoporous 2D Iridium Nanosheets with Amorphous Nickel Boron Oxide Layers to Improve Electrolytic Water Splitting.
    Kang Y; Jiang B; Malgras V; Guo Y; Cretu O; Kimoto K; Ashok A; Wan Z; Li H; Sugahara Y; Yamauchi Y; Asahi T
    Small Methods; 2021 Oct; 5(10):e2100679. PubMed ID: 34927951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent advances in amorphous electrocatalysts for oxygen evolution reaction.
    Park J; Lee S; Kim S
    Front Chem; 2022; 10():1030803. PubMed ID: 36238105
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications.
    Chen B; Sui S; He F; He C; Cheng HM; Qiao SZ; Hu W; Zhao N
    Chem Soc Rev; 2023 Nov; 52(22):7802-7847. PubMed ID: 37869994
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Free-Standing Crystalline@Amorphous Core-Shell Nanoarrays for Efficient Energy Storage.
    Fu S; Chen J; Wang X; He Q; Tong S; Wu M
    Small; 2020 Jul; 16(28):e2000040. PubMed ID: 32519511
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Research Advances of Amorphous Metal Oxides in Electrochemical Energy Storage and Conversion.
    Yan S; Abhilash KP; Tang L; Yang M; Ma Y; Xia Q; Guo Q; Xia H
    Small; 2019 Jan; 15(4):e1804371. PubMed ID: 30548915
    [TBL] [Abstract][Full Text] [Related]  

  • 9. "Lewis Base-Hungry" Amorphous-Crystalline Nickel Borate-Nickel Sulfide Heterostructures by In Situ Structural Engineering as Effective Bifunctional Electrocatalysts toward Overall Water Splitting.
    Sun Z; Wang X; Yuan M; Yang H; Su Y; Shi K; Nan C; Li H; Sun G; Zhu J; Yang X; Chen S
    ACS Appl Mater Interfaces; 2020 May; 12(21):23896-23903. PubMed ID: 32362112
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Coordination-Derived Cerium-Based Amorphous-Crystalline Heterostructure with High Electrocatalytic Oxygen Evolution Activity.
    An H; Mu X; Tan G; Su P; Liu L; Song N; Bai S; Yan CH; Tang Y
    Small; 2024 Mar; ():e2311505. PubMed ID: 38433398
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coherent Sub-Nanometer Interface between Crystalline and Amorphous Materials Boosts Electrochemical Synthesis of Hydrogen Peroxide.
    Bao Z; Yao Z; Zhu C; Liu Y; Zhang S; Zhao J; Ding L; Xu Z; Zhong X; Zhu Y; Wang J
    Small; 2023 Oct; 19(43):e2302380. PubMed ID: 37357155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Amorphous Catalysts and Electrochemical Water Splitting: An Untold Story of Harmony.
    Anantharaj S; Noda S
    Small; 2020 Jan; 16(2):e1905779. PubMed ID: 31823508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constructing Amorphous-Crystalline Interfacial Bifunctional Site Island-Sea Synergy by Morphology Engineering Boosts Alkaline Seawater Hydrogen Evolution.
    Sun P; Zheng X; Chen A; Zheng G; Wu Y; Long M; Zhang Q; Chen Y
    Adv Sci (Weinh); 2024 Jun; 11(24):e2309927. PubMed ID: 38498774
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Surface and Interface Engineering of Noble-Metal-Free Electrocatalysts for Efficient Energy Conversion Processes.
    Zhu YP; Guo C; Zheng Y; Qiao SZ
    Acc Chem Res; 2017 Apr; 50(4):915-923. PubMed ID: 28205437
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical MXene/transition metal chalcogenide heterostructures for electrochemical energy storage and conversion.
    Jin J; Xiao T; Zhang YF; Zheng H; Wang H; Wang R; Gong Y; He B; Liu X; Zhou K
    Nanoscale; 2021 Dec; 13(47):19740-19770. PubMed ID: 34821248
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Layered Crystalline and Amorphous Platinum Disulfide (PtS
    Wang Y; Szokolova K; Nasir MZM; Sofer Z; Pumera M
    Chemistry; 2019 May; 25(30):7330-7338. PubMed ID: 31063216
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Emerging of Heterostructure Materials in Energy Storage: A Review.
    Li Y; Zhang J; Chen Q; Xia X; Chen M
    Adv Mater; 2021 Jul; 33(27):e2100855. PubMed ID: 34033149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Recent Advances in Engineering of 2D Materials-Based Heterostructures for Electrochemical Energy Conversion.
    Zhang Y; Nie K; Yi L; Li B; Yuan Y; Liu Z; Huang W
    Adv Sci (Weinh); 2023 Nov; 10(31):e2302301. PubMed ID: 37743245
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxygen Vacancies and Interface Engineering on Amorphous/Crystalline CrO
    Yang M; Zhao M; Yuan J; Luo J; Zhang J; Lu Z; Chen D; Fu X; Wang L; Liu C
    Small; 2022 Apr; 18(14):e2106554. PubMed ID: 35150071
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Amorphous Oxide Nanostructures for Advanced Electrocatalysis.
    Li L; Shao Q; Huang X
    Chemistry; 2020 Mar; 26(18):3943-3960. PubMed ID: 31483074
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.