These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

184 related articles for article (PubMed ID: 36526605)

  • 1. An RNA Paranemic Crossover Triangle as A 3D Module for Cotranscriptional Nanoassembly.
    Sampedro Vallina N; McRae EKS; Geary C; Andersen ES
    Small; 2023 Mar; 19(13):e2204651. PubMed ID: 36526605
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Specific RNA self-assembly with minimal paranemic motifs.
    Afonin KA; Cieply DJ; Leontis NB
    J Am Chem Soc; 2008 Jan; 130(1):93-102. PubMed ID: 18072767
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure, folding and flexibility of co-transcriptional RNA origami.
    McRae EKS; Rasmussen HØ; Liu J; Bøggild A; Nguyen MTA; Sampedro Vallina N; Boesen T; Pedersen JS; Ren G; Geary C; Andersen ES
    Nat Nanotechnol; 2023 Jul; 18(7):808-817. PubMed ID: 36849548
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The study of the paranemic crossover (PX) motif in the context of self-assembly of DNA 2D crystals.
    Shen W; Liu Q; Ding B; Shen Z; Zhu C; Mao C
    Org Biomol Chem; 2016 Jul; 14(30):7187-90. PubMed ID: 27404049
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Paranemic Crossover DNA: There and Back Again.
    Wang X; Chandrasekaran AR; Shen Z; Ohayon YP; Wang T; Kizer ME; Sha R; Mao C; Yan H; Zhang X; Liao S; Ding B; Chakraborty B; Jonoska N; Niu D; Gu H; Chao J; Gao X; Li Y; Ciengshin T; Seeman NC
    Chem Rev; 2019 May; 119(10):6273-6289. PubMed ID: 29911864
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleic acid paranemic structures: a promising building block for functional nanomaterials in biomedical and bionanotechnological applications.
    Lee JY; Yang Q; Chang X; Wisniewski H; Olivera TR; Saji M; Kim S; Perumal D; Zhang F
    J Mater Chem B; 2022 Sep; 10(37):7460-7472. PubMed ID: 35912570
    [TBL] [Abstract][Full Text] [Related]  

  • 7. RNA self-assembly and RNA nanotechnology.
    Grabow WW; Jaeger L
    Acc Chem Res; 2014 Jun; 47(6):1871-80. PubMed ID: 24856178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computer-Aided Design of RNA Origami Structures.
    Sparvath SL; Geary CW; Andersen ES
    Methods Mol Biol; 2017; 1500():51-80. PubMed ID: 27813001
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exceptional Nuclease Resistance of Paranemic Crossover (PX) DNA and Crossover-Dependent Biostability of DNA Motifs.
    Chandrasekaran AR; Vilcapoma J; Dey P; Wong-Deyrup SW; Dey BK; Halvorsen K
    J Am Chem Soc; 2020 Apr; 142(14):6814-6821. PubMed ID: 32208657
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rapid prototyping of 3D DNA-origami shapes with caDNAno.
    Douglas SM; Marblestone AH; Teerapittayanon S; Vazquez A; Church GM; Shih WM
    Nucleic Acids Res; 2009 Aug; 37(15):5001-6. PubMed ID: 19531737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Paranemic cohesion of topologically-closed DNA molecules.
    Zhang X; Yan H; Shen Z; Seeman NC
    J Am Chem Soc; 2002 Nov; 124(44):12940-1. PubMed ID: 12405808
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Branched kissing loops for the construction of diverse RNA homooligomeric nanostructures.
    Liu D; Geary CW; Chen G; Shao Y; Li M; Mao C; Andersen ES; Piccirilli JA; Rothemund PWK; Weizmann Y
    Nat Chem; 2020 Mar; 12(3):249-259. PubMed ID: 31959958
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Wireframe and tensegrity DNA nanostructures.
    Simmel SS; Nickels PC; Liedl T
    Acc Chem Res; 2014 Jun; 47(6):1691-9. PubMed ID: 24720250
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Self-Assembly of DNA Nanostructures in Different Cations.
    Rodriguez A; Gandavadi D; Mathivanan J; Song T; Madhanagopal BR; Talbot H; Sheng J; Wang X; Chandrasekaran AR
    Small; 2023 Sep; 19(39):e2300040. PubMed ID: 37264756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Design and Crystallography of Self-Assembling RNA Nanostructures.
    Boerneke MA; Hermann T
    Methods Mol Biol; 2017; 1632():135-149. PubMed ID: 28730437
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Computer-Aided Design and Production of RNA Origami as Protein Scaffolds and Biosensors.
    Vallina NS; Geary C; Jepsen M; Andersen ES
    Methods Mol Biol; 2023; 2639():51-67. PubMed ID: 37166710
    [TBL] [Abstract][Full Text] [Related]  

  • 17. RNA origami: design, simulation and application.
    Poppleton E; Urbanek N; Chakraborty T; Griffo A; Monari L; Göpfrich K
    RNA Biol; 2023 Jan; 20(1):510-524. PubMed ID: 37498217
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Programming 2D Supramolecular Assemblies with Wireframe DNA Origami.
    Wang X; Jun H; Bathe M
    J Am Chem Soc; 2022 Mar; 144(10):4403-4409. PubMed ID: 35230115
    [TBL] [Abstract][Full Text] [Related]  

  • 19. RNA origami design tools enable cotranscriptional folding of kilobase-sized nanoscaffolds.
    Geary C; Grossi G; McRae EKS; Rothemund PWK; Andersen ES
    Nat Chem; 2021 Jun; 13(6):549-558. PubMed ID: 33972754
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Versatile kit of robust nanoshapes self-assembling from RNA and DNA modules.
    Monferrer A; Zhang D; Lushnikov AJ; Hermann T
    Nat Commun; 2019 Feb; 10(1):608. PubMed ID: 30723214
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.