These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
242 related articles for article (PubMed ID: 36526618)
1. Lithiated Prussian blue analogues as positive electrode active materials for stable non-aqueous lithium-ion batteries. Zhang Z; Avdeev M; Chen H; Yin W; Kan WH; He G Nat Commun; 2022 Dec; 13(1):7790. PubMed ID: 36526618 [TBL] [Abstract][Full Text] [Related]
2. Controlled Synthesis of 2D Prussian Blue Analog Nanosheets with Low Coordinated Water Content for High-Performance Lithium Storage. Yin J; Zhou J; Wang Y; Ma Y; Zhou X; Wang G; Yang Y; Lu P; Yu J; Chen Y; Yuan Y; Ye C; Xi S; Fan Z Small Methods; 2022 Dec; 6(12):e2201107. PubMed ID: 36287094 [TBL] [Abstract][Full Text] [Related]
3. Architecting hierarchical shell porosity of hollow prussian blue-derived iron oxide for enhanced Li storage. Zhao Z; Liu X; Luan C; Liu X; Wang D; Qin T; Sui L; Zhang W J Microsc; 2019 Nov; 276(2):53-62. PubMed ID: 31603242 [TBL] [Abstract][Full Text] [Related]
4. Dual Redox Reactions of Silver Hexacyanoferrate Prussian Blue Analogue Enable Superior Electrochemical Performance for Zinc-ion Storage. Wang L; Liu N; Li Q; Wang X; Liu J; Xu Y; Luo Z; Zhang N; Li F Angew Chem Int Ed Engl; 2024 Oct; ():e202416392. PubMed ID: 39401949 [TBL] [Abstract][Full Text] [Related]
5. Na Xu CM; Peng J; Liu XH; Lai WH; He XX; Yang Z; Wang JZ; Qiao Y; Li L; Chou SL Small Methods; 2022 Aug; 6(8):e2200404. PubMed ID: 35730654 [TBL] [Abstract][Full Text] [Related]
6. Interface and electronic structure engineering induced Prussian blue analogues with ultra-stable capability for aqueous NH Hou W; Yan C; Shao P; Dai K; Yang J Nanoscale; 2022 Jun; 14(23):8501-8509. PubMed ID: 35665797 [TBL] [Abstract][Full Text] [Related]
7. Cathode Electrolyte Interphase Engineering for Prussian Blue Analogues in Lithium-Ion Batteries. Wi TU; Park C; Ko S; Kim T; Choi A; Muralidharan V; Choi M; Lee HW Nano Lett; 2024 Jun; 24(25):7783-7791. PubMed ID: 38869099 [TBL] [Abstract][Full Text] [Related]
8. Vanadium Ferrocyanides as a Highly Stable Cathode for Lithium-Ion Batteries. Nguyen TP; Kim IT Molecules; 2023 Jan; 28(2):. PubMed ID: 36677524 [TBL] [Abstract][Full Text] [Related]
9. Photothermal Enhancement of Prussian Blue Cathodes for Li-Ion Batteries. Tan L; Kim BM; Pujari A; He Z; Boruah BD; De Volder M Nano Lett; 2024 Jul; 24(30):9147-9154. PubMed ID: 39028759 [TBL] [Abstract][Full Text] [Related]
10. A medium-entropy transition metal oxide cathode for high-capacity lithium metal batteries. Pei Y; Chen Q; Wang M; Zhang P; Ren Q; Qin J; Xiao P; Song L; Chen Y; Yin W; Tong X; Zhen L; Wang P; Xu CY Nat Commun; 2022 Oct; 13(1):6158. PubMed ID: 36257951 [TBL] [Abstract][Full Text] [Related]
11. In Situ Self-Assembly of Core-Shell Multimetal Prussian Blue Analogues for High-Performance Sodium-Ion Batteries. Yin J; Shen Y; Li C; Fan C; Sun S; Liu Y; Peng J; Qing L; Han J ChemSusChem; 2019 Nov; 12(21):4786-4790. PubMed ID: 31448557 [TBL] [Abstract][Full Text] [Related]
12. Nano-Ni/Co-PBA as high-performance cathode material for aqueous sodium-ion batteries. Zeng Y; Wang Y; Huang Z; Luo H; Tang H; Dong S; Luo P Nanotechnology; 2023 Sep; 34(47):. PubMed ID: 37604148 [TBL] [Abstract][Full Text] [Related]
13. Prussian Blue Analogues in Aqueous Batteries and Desalination Batteries. Xu C; Yang Z; Zhang X; Xia M; Yan H; Li J; Yu H; Zhang L; Shu J Nanomicro Lett; 2021 Aug; 13(1):166. PubMed ID: 34351516 [TBL] [Abstract][Full Text] [Related]
14. Surface Modification of Silicon Nanoparticles by an "Ink" Layer for Advanced Lithium Ion Batteries. Wu F; Wang H; Shi J; Yan Z; Song S; Peng B; Zhang X; Xiang Y ACS Appl Mater Interfaces; 2018 Jun; 10(23):19639-19648. PubMed ID: 29790742 [TBL] [Abstract][Full Text] [Related]
15. High Capacity and Fast Kinetics Enabled by Metal-Doping in Prussian Blue Analogue Cathodes for Sodium-Ion Batteries. Yimtrakarn T; Lo YA; Kongcharoenkitkul J; Lee JC; Kaveevivitchai W Chem Asian J; 2024 Jul; 19(13):e202301145. PubMed ID: 38703395 [TBL] [Abstract][Full Text] [Related]
16. Isostructural Synthesis of Iron-Based Prussian Blue Analogs for Sodium-Ion Batteries. Liu Y; Fan S; Gao Y; Liu Y; Zhang H; Chen J; Chen X; Huang J; Liu X; Li L; Qiao Y; Chou S Small; 2023 Oct; 19(43):e2302687. PubMed ID: 37376874 [TBL] [Abstract][Full Text] [Related]
17. Development of high-energy non-aqueous lithium-sulfur batteries via redox-active interlayer strategy. Lee BJ; Zhao C; Yu JH; Kang TH; Park HY; Kang J; Jung Y; Liu X; Li T; Xu W; Zuo XB; Xu GL; Amine K; Yu JS Nat Commun; 2022 Aug; 13(1):4629. PubMed ID: 35941110 [TBL] [Abstract][Full Text] [Related]
18. Zn-Ion Batteries: Boosting the Rate Capability and Low-temperature Performance by Combining Structure and Morphology Engineering. Wang F; Li Y; Zhu W; Ge X; Cui H; Feng K; Liu S; Yang X ACS Appl Mater Interfaces; 2021 Jul; 13(29):34468-34476. PubMed ID: 34260197 [TBL] [Abstract][Full Text] [Related]
19. Interstitial Water Improves Structural Stability of Iron Hexacyanoferrate for High-Performance Sodium-Ion Batteries. Hu J; Tao H; Chen M; Zhang Z; Cao S; Shen Y; Jiang K; Zhou M ACS Appl Mater Interfaces; 2022 Mar; 14(10):12234-12242. PubMed ID: 35234035 [TBL] [Abstract][Full Text] [Related]
20. Effect of particle dispersion on electrochemical performance of Prussian blue analogues electrode materials for sodium ion batteries. Chen WC; Li SJ; Xu HY; Xu SH; Fei GT Chemphyschem; 2024 Mar; 25(5):e202300960. PubMed ID: 38179835 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]