These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 36527053)

  • 1. Echolocating bats rapidly adjust their mouth gape to control spatial acquisition when scanning a target.
    Eitan O; Taub M; Boonman A; Zviran A; Tourbabin V; Weiss AJ; Yovel Y
    BMC Biol; 2022 Dec; 20(1):282. PubMed ID: 36527053
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bats adjust their mouth gape to zoom their biosonar field of view.
    Kounitsky P; Rydell J; Amichai E; Boonman A; Eitan O; Weiss AJ; Yovel Y
    Proc Natl Acad Sci U S A; 2015 May; 112(21):6724-9. PubMed ID: 25941395
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Coordinated Control of Acoustical Field of View and Flight in Three-Dimensional Space for Consecutive Capture by Echolocating Bats during Natural Foraging.
    Sumiya M; Fujioka E; Motoi K; Kondo M; Hiryu S
    PLoS One; 2017; 12(1):e0169995. PubMed ID: 28085936
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tight coordination of aerial flight maneuvers and sonar call production in insectivorous bats.
    Falk B; Kasnadi J; Moss CF
    J Exp Biol; 2015 Nov; 218(Pt 22):3678-88. PubMed ID: 26582935
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adaptive learning and recall of motor-sensory sequences in adult echolocating bats.
    Taub M; Yovel Y
    BMC Biol; 2021 Aug; 19(1):164. PubMed ID: 34412628
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Echolocation call intensity and directionality in flying short-tailed fruit bats, Carollia perspicillata (Phyllostomidae).
    Brinkløv S; Jakobsen L; Ratcliffe JM; Kalko EK; Surlykke A
    J Acoust Soc Am; 2011 Jan; 129(1):427-35. PubMed ID: 21303022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Convergent acoustic field of view in echolocating bats.
    Jakobsen L; Ratcliffe JM; Surlykke A
    Nature; 2013 Jan; 493(7430):93-6. PubMed ID: 23172147
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Scanning behavior in echolocating common pipistrelle bats (Pipistrellus pipistrellus).
    Seibert AM; Koblitz JC; Denzinger A; Schnitzler HU
    PLoS One; 2013; 8(4):e60752. PubMed ID: 23580164
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Directionality of nose-emitted echolocation calls from bats without a nose leaf (
    Jakobsen L; Hallam J; Moss CF; Hedenström A
    J Exp Biol; 2018 Feb; 221(Pt 3):. PubMed ID: 29222128
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sensory gaze stabilization in echolocating bats.
    Eitan O; Kosa G; Yovel Y
    Proc Biol Sci; 2019 Oct; 286(1913):20191496. PubMed ID: 31615357
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Echo-acoustic flow affects flight in bats.
    Kugler K; Greiter W; Luksch H; Firzlaff U; Wiegrebe L
    J Exp Biol; 2016 Jun; 219(Pt 12):1793-7. PubMed ID: 27045094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adaptive Echolocation and Flight Behaviors in Bats Can Inspire Technology Innovations for Sonar Tracking and Interception.
    Diebold CA; Salles A; Moss CF
    Sensors (Basel); 2020 May; 20(10):. PubMed ID: 32456142
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pregnancy-related sensory deficits might impair foraging in echolocating bats.
    Taub M; Mazar O; Yovel Y
    BMC Biol; 2023 Mar; 21(1):60. PubMed ID: 36973777
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Echolocating bats emit a highly directional sonar sound beam in the field.
    Surlykke A; Boel Pedersen S; Jakobsen L
    Proc Biol Sci; 2009 Mar; 276(1658):853-60. PubMed ID: 19129126
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling bat prey capture in echolocating bats: The feasibility of reactive pursuit.
    Vanderelst D; Peremans H
    J Theor Biol; 2018 Nov; 456():305-314. PubMed ID: 30102889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Adaptive beam-width control of echolocation sounds by CF-FM bats, Rhinolophus ferrumequinum nippon, during prey-capture flight.
    Matsuta N; Hiryu S; Fujioka E; Yamada Y; Riquimaroux H; Watanabe Y
    J Exp Biol; 2013 Apr; 216(Pt 7):1210-8. PubMed ID: 23487269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Place recognition using batlike sonar.
    Vanderelst D; Steckel J; Boen A; Peremans H; Holderied MW
    Elife; 2016 Aug; 5():. PubMed ID: 27481189
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Active control of acoustic field-of-view in a biosonar system.
    Yovel Y; Falk B; Moss CF; Ulanovsky N
    PLoS Biol; 2011 Sep; 9(9):e1001150. PubMed ID: 21931535
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Calling louder and longer: how bats use biosonar under severe acoustic interference from other bats.
    Amichai E; Blumrosen G; Yovel Y
    Proc Biol Sci; 2015 Dec; 282(1821):20152064. PubMed ID: 26702045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Single-click beam patterns suggest dynamic changes to the field of view of echolocating Atlantic spotted dolphins (Stenella frontalis) in the wild.
    Jensen FH; Wahlberg M; Beedholm K; Johnson M; de Soto NA; Madsen PT
    J Exp Biol; 2015 May; 218(Pt 9):1314-24. PubMed ID: 25767147
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.