These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36527224)

  • 1. "Toehold Switches; a foothold for Synthetic Biology".
    Yarra SS; Ashok G; Mohan U
    Biotechnol Bioeng; 2023 Apr; 120(4):932-952. PubMed ID: 36527224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Toehold switches: de-novo-designed regulators of gene expression.
    Green AA; Silver PA; Collins JJ; Yin P
    Cell; 2014 Nov; 159(4):925-39. PubMed ID: 25417166
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Design of RNA Toehold-Mediated Translation Activators.
    Wu K; Yan Z; Green AA
    Methods Mol Biol; 2022; 2518():33-47. PubMed ID: 35666437
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Signal amplification and optimization of riboswitch-based hybrid inputs by modular and titratable toehold switches.
    Hwang Y; Kim SG; Jang S; Kim J; Jung GY
    J Biol Eng; 2021 Mar; 15(1):11. PubMed ID: 33741029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nucleic acid strand displacement - from DNA nanotechnology to translational regulation.
    Simmel FC
    RNA Biol; 2023 Jan; 20(1):154-163. PubMed ID: 37095744
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria.
    Ekdahl AM; Rojano-Nisimura AM; Contreras LM
    J Mol Biol; 2022 Sep; 434(18):167689. PubMed ID: 35717997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Novel Synthetic Toehold Switch for MicroRNA Detection in Mammalian Cells.
    Wang S; Emery NJ; Liu AP
    ACS Synth Biol; 2019 May; 8(5):1079-1088. PubMed ID: 31039307
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Riboswitch-inspired toehold riboregulators for gene regulation in Escherichia coli.
    Wang T; Simmel FC
    Nucleic Acids Res; 2022 May; 50(8):4784-4798. PubMed ID: 35446427
    [TBL] [Abstract][Full Text] [Related]  

  • 9. End-to-end computational approach to the design of RNA biosensors for detecting miRNA biomarkers of cervical cancer.
    Baabu PRS; Srinivasan S; Nagarajan S; Muthamilselvan S; Selvi T; Suresh RR; Palaniappan A
    Synth Syst Biotechnol; 2022 Jun; 7(2):802-814. PubMed ID: 35475253
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transcriptional Interference in Toehold Switch-Based RNA Circuits.
    Falgenhauer E; Mückl A; Schwarz-Schilling M; Simmel FC
    ACS Synth Biol; 2022 May; 11(5):1735-1745. PubMed ID: 35412304
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design of RNA-Based Translational Repressors.
    Hong S; Park D; Chaudhary S; McCutcheon G; Green AA; Kim J
    Methods Mol Biol; 2022; 2518():49-64. PubMed ID: 35666438
    [TBL] [Abstract][Full Text] [Related]  

  • 12. De novo-designed translation-repressing riboregulators for multi-input cellular logic.
    Kim J; Zhou Y; Carlson PD; Teichmann M; Chaudhary S; Simmel FC; Silver PA; Collins JJ; Lucks JB; Yin P; Green AA
    Nat Chem Biol; 2019 Dec; 15(12):1173-1182. PubMed ID: 31686032
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Implementation of novel boolean logic gates for IMPLICATION and XOR functions using riboregulators.
    Chen C; Wu Q; Ke Q; Wang T; Zhang Y; Wei F; Wang X; Liu G
    Bioengineered; 2022 Jan; 13(1):1235-1248. PubMed ID: 34983299
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cellular Computational Logic Using Toehold Switches.
    Choi S; Lee G; Kim J
    Int J Mol Sci; 2022 Apr; 23(8):. PubMed ID: 35457085
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genetic switches based on nucleic acid strand displacement.
    Wang T; Hellmer H; Simmel FC
    Curr Opin Biotechnol; 2023 Feb; 79():102867. PubMed ID: 36535150
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developments of Riboswitches and Toehold Switches for Molecular Detection-Biosensing and Molecular Diagnostics.
    Chau THT; Mai DHA; Pham DN; Le HTQ; Lee EY
    Int J Mol Sci; 2020 Apr; 21(9):. PubMed ID: 32366036
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Application of mRNA Arrays for the Production of mCherry Reporter-Protein Arrays for Quantitative Gene Expression Analysis.
    Norouzi M; Pickford AR; Butt LE; Vincent HA; Callaghan AJ
    ACS Synth Biol; 2019 Feb; 8(2):207-215. PubMed ID: 30682244
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Sequence-to-function deep learning frameworks for engineered riboregulators.
    Valeri JA; Collins KM; Ramesh P; Alcantar MA; Lepe BA; Lu TK; Camacho DM
    Nat Commun; 2020 Oct; 11(1):5058. PubMed ID: 33028819
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short Activators and Repressors of RNA Toehold Switches.
    McSweeney MA; Zhang Y; Styczynski MP
    ACS Synth Biol; 2023 Mar; 12(3):681-688. PubMed ID: 36802167
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Riboregulated toehold-gated gRNA for programmable CRISPR-Cas9 function.
    Siu KH; Chen W
    Nat Chem Biol; 2019 Mar; 15(3):217-220. PubMed ID: 30531984
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.