BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 36527237)

  • 1. Thermodynamic analysis of an entropically driven, high-affinity nanobody-HIV p24 interaction.
    Brookes JC; Gray ER; Loynachan CN; Gut MJ; Miller BS; P S Brogan A; McKendry RA
    Biophys J; 2023 Jan; 122(2):279-289. PubMed ID: 36527237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unravelling the Molecular Basis of High Affinity Nanobodies against HIV p24: In Vitro Functional, Structural, and in Silico Insights.
    Gray ER; Brookes JC; Caillat C; Turbé V; Webb BLJ; Granger LA; Miller BS; McCoy LE; El Khattabi M; Verrips CT; Weiss RA; Duffy DM; Weissenhorn W; McKendry RA
    ACS Infect Dis; 2017 Jul; 3(7):479-491. PubMed ID: 28591513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of Nanobody Binding to Lactose Permease.
    Hariharan P; Andersson M; Jiang X; Pardon E; Steyaert J; Kaback HR; Guan L
    Biochemistry; 2016 Oct; 55(42):5917-5926. PubMed ID: 27686537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interaction of epitope-related and -unrelated peptides with anti-p24 (HIV-1) monoclonal antibody CB4-1 and its Fab fragment.
    Welfle K; Misselwitz R; Höhne W; Welfle H
    J Mol Recognit; 2003; 16(1):54-62. PubMed ID: 12557239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and Computational Studies of the SARS-CoV-2 Spike Protein Binding Mechanisms with Nanobodies: From Structure and Dynamics to Avidity-Driven Nanobody Engineering.
    Verkhivker G
    Int J Mol Sci; 2022 Mar; 23(6):. PubMed ID: 35328351
    [TBL] [Abstract][Full Text] [Related]  

  • 6. PHOENIX: a scoring function for affinity prediction derived using high-resolution crystal structures and calorimetry measurements.
    Tang YT; Marshall GR
    J Chem Inf Model; 2011 Feb; 51(2):214-28. PubMed ID: 21214225
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Direct measurement of protein binding energetics by isothermal titration calorimetry.
    Leavitt S; Freire E
    Curr Opin Struct Biol; 2001 Oct; 11(5):560-6. PubMed ID: 11785756
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanobodies raised against monomeric α-synuclein distinguish between fibrils at different maturation stages.
    Guilliams T; El-Turk F; Buell AK; O'Day EM; Aprile FA; Esbjörner EK; Vendruscolo M; Cremades N; Pardon E; Wyns L; Welland ME; Steyaert J; Christodoulou J; Dobson CM; De Genst E
    J Mol Biol; 2013 Jul; 425(14):2397-411. PubMed ID: 23557833
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High affinity antigen recognition of the dual specific variants of herceptin is entropy-driven in spite of structural plasticity.
    Bostrom J; Haber L; Koenig P; Kelley RF; Fuh G
    PLoS One; 2011 Apr; 6(4):e17887. PubMed ID: 21526167
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Affinity enhancement of nanobody binding to EGFR: in silico site-directed mutagenesis and molecular dynamics simulation approaches.
    Farasat A; Rahbarizadeh F; Hosseinzadeh G; Sajjadi S; Kamali M; Keihan AH
    J Biomol Struct Dyn; 2017 Jun; 35(8):1710-1728. PubMed ID: 27691399
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Binding and thermodynamics of REV peptide-ctDNA interaction.
    Upadhyay SK
    Biopolymers; 2017 Mar; 108(2):. PubMed ID: 27353011
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermodynamic analysis of r-hGH-polymer surface Interaction using isothermal titration calorimetry.
    Parikh V; Gupta P
    Growth Horm IGF Res; 2018; 42-43():86-93. PubMed ID: 30368133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An integrated computational pipeline for designing high-affinity nanobodies with expanded genetic codes.
    Padhi AK; Kumar A; Haruna KI; Sato H; Tamura H; Nagatoishi S; Tsumoto K; Yamaguchi A; Iraha F; Takahashi M; Sakamoto K; Zhang KYJ
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34415295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Intrinsic Thermodynamics of Protein-Ligand Binding by Isothermal Titration Calorimetry as Aid to Drug Design.
    Paketurytė V; Zubrienė A; Ladbury JE; Matulis D
    Methods Mol Biol; 2019; 1964():61-74. PubMed ID: 30929235
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Calorimetry of apolipoprotein-A1 binding to phosphatidylcholine-triolein-cholesterol emulsions.
    Derksen A; Gantz D; Small DM
    Biophys J; 1996 Jan; 70(1):330-8. PubMed ID: 8770209
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isothermal Titration Calorimetry for Quantification of Protein-Carbohydrate Interactions.
    Brown HA; Koropatkin NM
    Methods Mol Biol; 2023; 2657():129-140. PubMed ID: 37149527
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Titration calorimetry study of an anti-idiotypic antibody cascade in a human melanoma-associated antigen system.
    Mutz M; Hawthorne T; Ferrone S; Pluschke G
    Mol Immunol; 1997 Jul; 34(10):695-707. PubMed ID: 9430197
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Molecular basis of resistance to HIV-1 protease inhibition: a plausible hypothesis.
    Luque I; Todd MJ; Gómez J; Semo N; Freire E
    Biochemistry; 1998 Apr; 37(17):5791-7. PubMed ID: 9558312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contribution of the trifluoroacetyl group in the thermodynamics of antigen-antibody binding.
    Oda M; Saito M; Tsumuraya T; Fujii I
    J Mol Recognit; 2010; 23(3):263-70. PubMed ID: 19544483
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The thermodynamics of protein-ligand interaction and solvation: insights for ligand design.
    Olsson TS; Williams MA; Pitt WR; Ladbury JE
    J Mol Biol; 2008 Dec; 384(4):1002-17. PubMed ID: 18930735
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.