These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 36527379)

  • 21. Full Width at Half Maximum of Nanopore Current Blockage Controlled by a Single-Biomolecule Interface.
    Li JG; Li MY; Li XY; Wu XY; Ying YL; Long YT
    Langmuir; 2022 Jan; 38(3):1188-1193. PubMed ID: 35019652
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A Generalized Transformer-Based Pulse Detection Algorithm.
    Dematties D; Wen C; Zhang SL
    ACS Sens; 2022 Sep; 7(9):2710-2720. PubMed ID: 36039873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Identification of differential RNA modifications from nanopore direct RNA sequencing with xPore.
    Pratanwanich PN; Yao F; Chen Y; Koh CWQ; Wan YK; Hendra C; Poon P; Goh YT; Yap PML; Chooi JY; Chng WJ; Ng SB; Thiery A; Goh WSS; Göke J
    Nat Biotechnol; 2021 Nov; 39(11):1394-1402. PubMed ID: 34282325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Single-aminoacid discrimination in proteins with homogeneous nanopore sensors and neural networks.
    Rodriguez-Larrea D
    Biosens Bioelectron; 2021 May; 180():113108. PubMed ID: 33690101
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Localized Nanopore Fabrication via Controlled Breakdown.
    Ying C; Ma T; Xu L; Rahmani M
    Nanomaterials (Basel); 2022 Jul; 12(14):. PubMed ID: 35889608
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Identification of Conformational Variants for Bradykinin Biomarker Peptides from a Biofluid Using a Nanopore and Machine Learning.
    Greive SJ; Bacri L; Cressiot B; Pelta J
    ACS Nano; 2024 Jan; 18(1):539-550. PubMed ID: 38134312
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Single Molecule Identification and Quantification of Glycosaminoglycans Using Solid-State Nanopores.
    Im J; Lindsay S; Wang X; Zhang P
    ACS Nano; 2019 Jun; 13(6):6308-6318. PubMed ID: 31121093
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Analysis of Pore Formation and Protein Translocation Using Large Biological Nanopores.
    Watanabe H; Gubbiotti A; Chinappi M; Takai N; Tanaka K; Tsumoto K; Kawano R
    Anal Chem; 2017 Nov; 89(21):11269-11277. PubMed ID: 28980803
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Solid-state Nanopores: Chemical Modifications, Interactions, and Functionalities.
    Yang L; Hu J; Li MC; Xu M; Gu ZY
    Chem Asian J; 2022 Nov; 17(22):e202200775. PubMed ID: 36071031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequoia: an interactive visual analytics platform for interpretation and feature extraction from nanopore sequencing datasets.
    Koonchanok R; Daulatabad SV; Mir Q; Reda K; Janga SC
    BMC Genomics; 2021 Jul; 22(1):513. PubMed ID: 34233619
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Central Limit Theorem-Based Analysis Method for MicroRNA Detection with Solid-State Nanopores.
    Yan H; Weng T; Zhu L; Tang P; Zhang Z; Zhang P; Wang D; Lu Z
    ACS Appl Bio Mater; 2021 Aug; 4(8):6394-6403. PubMed ID: 35006879
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A Nanopore-Based Saccharide Sensor.
    Zhang S; Cao Z; Fan P; Wang Y; Jia W; Wang L; Wang K; Liu Y; Du X; Hu C; Zhang P; Chen HY; Huang S
    Angew Chem Int Ed Engl; 2022 Aug; 61(33):e202203769. PubMed ID: 35718742
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Chemically tailoring nanopores for single-molecule sensing and glycomics.
    Hagan JT; Sheetz BS; Bandara YMNDY; Karawdeniya BI; Morris MA; Chevalier RB; Dwyer JR
    Anal Bioanal Chem; 2020 Oct; 412(25):6639-6654. PubMed ID: 32488384
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nanoscale Probing of Informational Polymers with Nanopores. Applications to Amyloidogenic Fragments, Peptides, and DNA-PNA Hybrids.
    Luchian T; Park Y; Asandei A; Schiopu I; Mereuta L; Apetrei A
    Acc Chem Res; 2019 Jan; 52(1):267-276. PubMed ID: 30605305
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Nanopore-based technologies beyond DNA sequencing.
    Ying YL; Hu ZL; Zhang S; Qing Y; Fragasso A; Maglia G; Meller A; Bayley H; Dekker C; Long YT
    Nat Nanotechnol; 2022 Nov; 17(11):1136-1146. PubMed ID: 36163504
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Recent Advances in Aptamer-Based Nanopore Sensing at Single-Molecule Resolution.
    Lv P; Zhang W; Yang Y; Gao H; Li S; Tan CS; Ming D
    Chem Asian J; 2022 Aug; 17(16):e202200364. PubMed ID: 35644914
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Primary sequence-assisted prediction of m
    Zhang Y; Huang D; Wei Z; Chen K
    Methods; 2022 Jul; 203():62-69. PubMed ID: 35429629
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Deep Learning of Nanopore Sensing Signals Using a Bi-Path Network.
    Dematties D; Wen C; Pérez MD; Zhou D; Zhang SL
    ACS Nano; 2021 Sep; 15(9):14419-14429. PubMed ID: 34583465
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biological nanopores for sensing applications.
    Zhang M; Chen C; Zhang Y; Geng J
    Proteins; 2022 Oct; 90(10):1786-1799. PubMed ID: 35092317
    [TBL] [Abstract][Full Text] [Related]  

  • 40. High selectivity sensing of bovine serum albumin: The combination of glass nanopore and molecularly imprinted technology.
    Wang L; Ma Y; Wang L
    Biosens Bioelectron; 2021 Apr; 178():113056. PubMed ID: 33550161
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.