BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 36527527)

  • 1. Iron and copper ions accelerate and modify dopamine oxidation to eumelanin: implications for neuromelanin genesis.
    Ito S; Napolitano A; Sarna T; Wakamatsu K
    J Neural Transm (Vienna); 2023 Jan; 130(1):29-42. PubMed ID: 36527527
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Photobleached Oxidative Degradation of Melanins: Chemical Characterization of Melanins Present in Alpaca Fiber.
    Wakamatsu K; Munyard K; Oddie C; Ito S
    Photochem Photobiol; 2021 Nov; 97(6):1493-1497. PubMed ID: 34435360
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fe(III)-coordination properties of neuromelanin components: 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid.
    Charkoudian LK; Franz KJ
    Inorg Chem; 2006 May; 45(9):3657-64. PubMed ID: 16634598
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-performance liquid chromatography estimation of cross-linking of dihydroxyindole moiety in eumelanin.
    Ito S; Wakamatsu K; Glass K; Simon JD
    Anal Biochem; 2013 Mar; 434(2):221-5. PubMed ID: 23256922
    [TBL] [Abstract][Full Text] [Related]  

  • 5. 5,6-Dihydroxyindole eumelanin content in human skin with varying degrees of constitutive pigmentation.
    Del Bino S; Ito S; Sok J; Wakamatsu K
    Pigment Cell Melanoma Res; 2022 Nov; 35(6):622-626. PubMed ID: 35933709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interactions of quercetin with iron and copper ions: complexation and autoxidation.
    El Hajji H; Nkhili E; Tomao V; Dangles O
    Free Radic Res; 2006 Mar; 40(3):303-20. PubMed ID: 16484047
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Elucidation of the interplay between Fe(II), Fe(III), and dopamine with relevance to iron solubilization and reactive oxygen species generation by catecholamines.
    Sun Y; Pham AN; Waite TD
    J Neurochem; 2016 Jun; 137(6):955-68. PubMed ID: 26991725
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Chemical degradation of melanins: application to identification of dopamine-melanin.
    Ito S; Wakamatsu K
    Pigment Cell Res; 1998 Apr; 11(2):120-6. PubMed ID: 9585251
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cu(II)-catalyzed oxidation of dopamine in aqueous solutions: mechanism and kinetics.
    Pham AN; Waite TD
    J Inorg Biochem; 2014 Aug; 137():74-84. PubMed ID: 24815905
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 5,6-Dihydroxyindoles in the fenton reaction: a model study of the role of melanin precursors in oxidative stress and hyperpigmentary processes.
    Novellino L; Napolitano A; Prota G
    Chem Res Toxicol; 1999 Oct; 12(10):985-92. PubMed ID: 10525276
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutral pH and copper ions promote eumelanogenesis after the dopachrome stage.
    Ito S; Suzuki N; Takebayashi S; Commo S; Wakamatsu K
    Pigment Cell Melanoma Res; 2013 Nov; 26(6):817-25. PubMed ID: 23844795
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The structure of neuromelanin as studied by chemical degradative methods.
    Wakamatsu K; Fujikawa K; Zucca FA; Zecca L; Ito S
    J Neurochem; 2003 Aug; 86(4):1015-23. PubMed ID: 12887698
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Degree of polymerization of 5,6-dihydroxyindole-derived eumelanin from chemical degradation study.
    Okuda H; Yoshino K; Wakamatsu K; Ito S; Sota T
    Pigment Cell Melanoma Res; 2014 Jul; 27(4):664-7. PubMed ID: 24750564
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Step-by-step deposition of synthetic dopamine-eumelanin and metal cations.
    Ball V; Bour J; Michel M
    J Colloid Interface Sci; 2013 Sep; 405():331-5. PubMed ID: 23746679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploiting Principal Component Analysis (PCA) to reveal temperature, buffer and metal ions' role in neuromelanin (NM) synthesis by dopamine (DA) oxidative polymerization.
    Schifano F; Magnaghi LR; Monzani E; Casella L; Biesuz R
    J Inorg Biochem; 2024 Jul; 256():112548. PubMed ID: 38593610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Improved HPLC Conditions to Determine Eumelanin and Pheomelanin Contents in Biological Samples Using an Ion Pair Reagent.
    Ito S; Del Bino S; Hirobe T; Wakamatsu K
    Int J Mol Sci; 2020 Jul; 21(14):. PubMed ID: 32698502
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elemental mapping of Neuromelanin organelles of human Substantia Nigra: correlative ultrastructural and chemical analysis by analytical transmission electron microscopy and nano-secondary ion mass spectrometry.
    Biesemeier A; Eibl O; Eswara S; Audinot JN; Wirtz T; Pezzoli G; Zucca FA; Zecca L; Schraermeyer U
    J Neurochem; 2016 Jul; 138(2):339-53. PubMed ID: 27121280
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A possible new oxidation marker for hair adulteration: Detection of PTeCA (1H-pyrrole-2,3,4,5-tetracarboxylic acid) in bleached hair.
    Eisenbeiss L; Binz TM; Baumgartner MR; Steuer AE; Kraemer T
    Drug Test Anal; 2020 Feb; 12(2):230-238. PubMed ID: 31655024
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hydrogen peroxide generation associated with the oxidations of the eumelanin precursors 5,6-dihydroxyindole and 5,6-dihydroxyindole-2-carboxylic acid.
    Nappi AJ; Vass E
    Melanoma Res; 1996 Oct; 6(5):341-9. PubMed ID: 8908594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effectiveness of the Iron Chelator CN128 in Mitigating the Formation of Dopamine Oxidation Products Associated with the Progression of Parkinson's Disease.
    Sun Y; Pham AN; Hider RC; Zheng H; Waite TD
    ACS Chem Neurosci; 2020 Nov; 11(21):3646-3657. PubMed ID: 33143428
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.