These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

244 related articles for article (PubMed ID: 36527829)

  • 1. Current understanding, challenges and perspective on portable systems applied to plant monitoring and precision agriculture.
    Lo Presti D; Di Tocco J; Massaroni C; Cimini S; De Gara L; Singh S; Raucci A; Manganiello G; Woo SL; Schena E; Cinti S
    Biosens Bioelectron; 2023 Feb; 222():115005. PubMed ID: 36527829
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Plant Wearable Sensors Based on FBG Technology for Growth and Microclimate Monitoring.
    Lo Presti D; Cimini S; Massaroni C; D'Amato R; Caponero MA; De Gara L; Schena E
    Sensors (Basel); 2021 Sep; 21(19):. PubMed ID: 34640649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Plant Growth Monitoring: Design, Fabrication, and Feasibility Assessment of Wearable Sensors Based on Fiber Bragg Gratings.
    Lo Presti D; Di Tocco J; Cimini S; Cinti S; Massaroni C; D'Amato R; Caponero MA; De Gara L; Schena E
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616959
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Wearable sensor supports in-situ and continuous monitoring of plant health in precision agriculture era.
    Li XH; Li MZ; Li JY; Gao YY; Liu CR; Hao GF
    Plant Biotechnol J; 2024 Jun; 22(6):1516-1535. PubMed ID: 38184781
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Flexible Wearables for Plants.
    Qu CC; Sun XY; Sun WX; Cao LX; Wang XQ; He ZZ
    Small; 2021 Dec; 17(50):e2104482. PubMed ID: 34796649
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Plant-Wear: A Multi-Sensor Plant Wearable Platform for Growth and Microclimate Monitoring.
    Di Tocco J; Lo Presti D; Massaroni C; Cinti S; Cimini S; De Gara L; Schena E
    Sensors (Basel); 2023 Jan; 23(1):. PubMed ID: 36617147
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Soil Sensors and Plant Wearables for Smart and Precision Agriculture.
    Yin H; Cao Y; Marelli B; Zeng X; Mason AJ; Cao C
    Adv Mater; 2021 May; 33(20):e2007764. PubMed ID: 33829545
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flexible wearable sensors for crop monitoring: a review.
    Yan B; Zhang F; Wang M; Zhang Y; Fu S
    Front Plant Sci; 2024; 15():1406074. PubMed ID: 38867881
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modern analytical and bioanalytical technologies and concepts for smart and precision farming.
    Tsong JL; Khor SM
    Anal Methods; 2023 Jul; 15(26):3125-3148. PubMed ID: 37376849
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Achievements and Challenges for Real-Time Sensing of Analytes in Sweat within Wearable Platforms.
    Brothers MC; DeBrosse M; Grigsby CC; Naik RR; Hussain SM; Heikenfeld J; Kim SS
    Acc Chem Res; 2019 Feb; 52(2):297-306. PubMed ID: 30688433
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Non-destructive Technologies for Plant Health Diagnosis.
    Ang MC; Lew TTS
    Front Plant Sci; 2022; 13():884454. PubMed ID: 35712566
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Origami-inspired highly stretchable and breathable 3D wearable sensors for in-situ and online monitoring of plant growth and microclimate.
    Zhang C; Kong J; Wang Z; Tu C; Li Y; Wu D; Song H; Zhao W; Feng S; Guan Z; Ding B; Chen F
    Biosens Bioelectron; 2024 Sep; 259():116379. PubMed ID: 38749288
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nanobiotechnology approaches for engineering smart plant sensors.
    Giraldo JP; Wu H; Newkirk GM; Kruss S
    Nat Nanotechnol; 2019 Jun; 14(6):541-553. PubMed ID: 31168083
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In Vivo Sensing of pH in Tomato Plants Using a Low-Cost and Open-Source Device for Precision Agriculture.
    Ruiz-Gonzalez A; Kempson H; Haseloff J
    Biosensors (Basel); 2022 Jun; 12(7):. PubMed ID: 35884250
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Revisiting the Role of Sensors for Shaping Plant Research: Applications and Future Perspectives.
    Tyagi A; Mir ZA; Ali S
    Sensors (Basel); 2024 May; 24(11):. PubMed ID: 38894052
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recent advancement in biosensors technology for animal and livestock health management.
    Neethirajan S; Tuteja SK; Huang ST; Kelton D
    Biosens Bioelectron; 2017 Dec; 98():398-407. PubMed ID: 28711026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Plant development and crop protection using phytonanotechnology: A new window for sustainable agriculture.
    Agrawal S; Kumar V; Kumar S; Shahi SK
    Chemosphere; 2022 Jul; 299():134465. PubMed ID: 35367229
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Field-Effect Transistor-Based Biosensors for Environmental and Agricultural Monitoring.
    Elli G; Hamed S; Petrelli M; Ibba P; Ciocca M; Lugli P; Petti L
    Sensors (Basel); 2022 May; 22(11):. PubMed ID: 35684798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Advances in Sweat Wearables: Sample Extraction, Real-Time Biosensing, and Flexible Platforms.
    Qiao L; Benzigar MR; Subramony JA; Lovell NH; Liu G
    ACS Appl Mater Interfaces; 2020 Jul; 12(30):34337-34361. PubMed ID: 32579332
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.