BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 36527969)

  • 1. Insights into the influence of Fe(III) on the interaction between roxarsone and humic acid using multi-spectroscopic techniques.
    Yin L; Zhu J; Kong D; Xu Y; Ge S; Ni L; Li S
    Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar; 289():122213. PubMed ID: 36527969
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roxarsone binding to soil-derived dissolved organic matter: Insights from multi-spectroscopic techniques.
    Fu QL; He JZ; Blaney L; Zhou DM
    Chemosphere; 2016 Jul; 155():225-233. PubMed ID: 27115847
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Characterizing the interaction between roxarsone and humic acid by fluorescence quenching experiment].
    Zhu JP; Mei T; Peng Y; Ge SY; Li SY; Wang GX
    Huan Jing Ke Xue; 2014 Jul; 35(7):2620-6. PubMed ID: 25244846
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of Fe(III) in preventing humic interference during As(III) detection on gold electrode: spectroscopic and voltammetric evidence.
    Liu ZG; Chen X; Jia Y; Liu JH; Huang XJ
    J Hazard Mater; 2014 Feb; 267():153-60. PubMed ID: 24440655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Transformation of roxarsone during UV disinfection in the presence of ferric ions.
    Chen Y; Lin C; Zhou Y; Long L; Li L; Tang M; Liu Z; Pozdnyakov IP; Huang LZ
    Chemosphere; 2019 Oct; 233():431-439. PubMed ID: 31176907
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sorption of roxarsone onto soils with different physicochemical properties.
    Fu QL; He JZ; Blaney L; Zhou DM
    Chemosphere; 2016 Sep; 159():103-112. PubMed ID: 27281543
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The role of organic and inorganic substituents of roxarsone determines its binding behavior and mechanisms onto nano-ferrihydrite colloidal particles.
    Lei M; Huang Y; Zhou Y; Mensah CO; Wei D; Li B
    J Environ Sci (China); 2023 Jul; 129():30-44. PubMed ID: 36804240
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Enhanced removal of organoarsenic by chlorination: Kinetics, effect of humic acid, and adsorbable chlorinated organoarsenic.
    Wu S; Yang T; Mai J; Tang L; Liang P; Zhu M; Huang C; Li Q; Cheng X; Liu M; Ma J
    J Hazard Mater; 2022 Jan; 422():126820. PubMed ID: 34418831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiple spectroscopic insights into the interaction mechanisms between proteins and humic acid.
    Gong B; Chen W; Sit PH; Liu XW; Qian C; Yu HQ
    Water Res; 2023 Sep; 243():120424. PubMed ID: 37523922
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A simple treatment method for phenylarsenic compounds: Oxidation by ferrate (VI) and simultaneous removal of the arsenate released with in situ formed Fe(III) oxide-hydroxide.
    Xie X; Cheng H
    Environ Int; 2019 Jun; 127():730-741. PubMed ID: 31003056
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interaction between roxarsone, an organic arsenic compound, with humic substances in the soil simulating environmental conditions.
    Nascimento ALA; Figueiredo IM; Botero WG; Santos JCC
    Chemosphere; 2023 Oct; 339():139688. PubMed ID: 37532198
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronous-scan fluorescence spectra of Chlorella vulgaris solution.
    Liu X; Tao S; Deng N
    Chemosphere; 2005 Sep; 60(11):1550-4. PubMed ID: 15961140
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atrazine photodegradation in aqueous solution induced by interaction of humic acids and iron: photoformation of iron(II) and hydrogen peroxide.
    Ou X; Quan X; Chen S; Zhao H; Zhang Y
    J Agric Food Chem; 2007 Oct; 55(21):8650-6. PubMed ID: 17892253
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Particle size, charge and colloidal stability of humic acids coprecipitated with Ferrihydrite.
    Angelico R; Ceglie A; He JZ; Liu YR; Palumbo G; Colombo C
    Chemosphere; 2014 Mar; 99():239-47. PubMed ID: 24315181
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of Has-Fe(III) complex on the photodegradation of 2, 4-D in aqueous environment].
    Yu CY; Zhao HM; Chen S; Zhang YB; Quan X
    Huan Jing Ke Xue; 2010 Feb; 31(2):379-84. PubMed ID: 20391706
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antimony speciation and mobility during Fe(II)-induced transformation of humic acid-antimony(V)-iron(III) coprecipitates.
    Karimian N; Burton ED; Johnston SG
    Environ Pollut; 2019 Nov; 254(Pt B):113112. PubMed ID: 31479811
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Roxarsone desorption from the surface of goethite by competitive anions, phosphate and hydroxide ions: Significance of the presence of metal ions.
    Wang LY; Wang SW; Chen WR
    Chemosphere; 2016 Jun; 152():423-30. PubMed ID: 26999752
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cation-induced coagulation of aquatic plant-derived dissolved organic matter: Investigation by EEM-PARAFAC and FT-IR spectroscopy.
    Liu S; Zhu Y; Liu L; He Z; Giesy JP; Bai Y; Sun F; Wu F
    Environ Pollut; 2018 Mar; 234():726-734. PubMed ID: 29241158
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Identifying Plant Stress Responses to Roxarsone in Soybean Root Exudates: New Insights from Two-Dimensional Correlation Spectroscopy.
    Fu QL; Blaney L; Zhou DM
    J Agric Food Chem; 2018 Jan; 66(1):53-62. PubMed ID: 29240415
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characterisation of Fe-oxide nanoparticles coated with humic acid and Suwannee River natural organic matter.
    Chekli L; Phuntsho S; Roy M; Shon HK
    Sci Total Environ; 2013 Sep; 461-462():19-27. PubMed ID: 23712112
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.