These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36528138)

  • 1. A machine learning approach to identifying patients with pulmonary hypertension using real-world electronic health records.
    Kogan E; Didden EM; Lee E; Nnewihe A; Stamatiadis D; Mataraso S; Quinn D; Rosenberg D; Chehoud C; Bridges C
    Int J Cardiol; 2023 Mar; 374():95-99. PubMed ID: 36528138
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Claims-Based Algorithms for Identifying Patients With Pulmonary Hypertension: A Comparison of Decision Rules and Machine-Learning Approaches.
    Ong MS; Klann JG; Lin KJ; Maron BA; Murphy SN; Natter MD; Mandl KD
    J Am Heart Assoc; 2020 Oct; 9(19):e016648. PubMed ID: 32990147
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A machine learning cardiac magnetic resonance approach to extract disease features and automate pulmonary arterial hypertension diagnosis.
    Swift AJ; Lu H; Uthoff J; Garg P; Cogliano M; Taylor J; Metherall P; Zhou S; Johns CS; Alabed S; Condliffe RA; Lawrie A; Wild JM; Kiely DG
    Eur Heart J Cardiovasc Imaging; 2021 Jan; 22(2):236-245. PubMed ID: 31998956
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamic ElecTronic hEalth reCord deTection (DETECT) of individuals at risk of a first episode of psychosis: a case-control development and validation study.
    Raket LL; Jaskolowski J; Kinon BJ; Brasen JC; Jönsson L; Wehnert A; Fusar-Poli P
    Lancet Digit Health; 2020 May; 2(5):e229-e239. PubMed ID: 33328055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning functional impairment classification with electronic health record data.
    Pavon JM; Previll L; Woo M; Henao R; Solomon M; Rogers U; Olson A; Fischer J; Leo C; Fillenbaum G; Hoenig H; Casarett D
    J Am Geriatr Soc; 2023 Sep; 71(9):2822-2833. PubMed ID: 37195174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Non-invasive screening using ventilatory gas analysis to distinguish between chronic thromboembolic pulmonary hypertension and pulmonary arterial hypertension.
    Akizuki M; Sugimura K; Aoki T; Kakihana T; Tatebe S; Yamamoto S; Sato H; Satoh K; Shimokawa H; Kohzuki M
    Respirology; 2020 Apr; 25(4):427-434. PubMed ID: 31261445
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An algorithm to identify cases of pulmonary arterial hypertension from the electronic medical record.
    Schuler KP; Hemnes AR; Annis J; Farber-Eger E; Lowery BD; Halliday SJ; Brittain EL
    Respir Res; 2022 May; 23(1):138. PubMed ID: 35643554
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Prevalence of pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension in the United States.
    Kirson NY; Birnbaum HG; Ivanova JI; Waldman T; Joish V; Williamson T
    Curr Med Res Opin; 2011 Sep; 27(9):1763-8. PubMed ID: 21793646
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Development and evaluation of a predictive algorithm for unsatisfactory response among patients with pulmonary arterial hypertension using health insurance claims data.
    Gauthier-Loiselle M; Tsang Y; Lefebvre P; Agron P; Royer J; Bell Lynum KS; Bennett L; Panjabi S
    Curr Med Res Opin; 2022 Jun; 38(6):1019-1030. PubMed ID: 35243952
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Top End Pulmonary Hypertension Study: Understanding Epidemiology, Therapeutic Gaps and Prognosis in Remote Australian Setting.
    Naing P; Playford D; Strange G; Abeyaratne A; Berhane T; Joseph S; Costelloe E; Hall M; Scalia GM; Forrester DL; Falhammar H; Kangaharan N
    Heart Lung Circ; 2021 Apr; 30(4):507-515. PubMed ID: 32962944
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Combining chest X-rays and electronic health record (EHR) data using machine learning to diagnose acute respiratory failure.
    Jabbour S; Fouhey D; Kazerooni E; Wiens J; Sjoding MW
    J Am Med Inform Assoc; 2022 May; 29(6):1060-1068. PubMed ID: 35271711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Prediction model of obstructive sleep apnea-related hypertension: Machine learning-based development and interpretation study.
    Shi Y; Ma L; Chen X; Li W; Feng Y; Zhang Y; Cao Z; Yuan Y; Xie Y; Liu H; Yin L; Zhao C; Wu S; Ren X
    Front Cardiovasc Med; 2022; 9():1042996. PubMed ID: 36545020
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Risk factors associated with skeletal-related events following discontinuation of denosumab treatment among patients with bone metastases from solid tumors: A real-world machine learning approach.
    Jacobson D; Cadieux B; Higano CS; Henry DH; Bachmann BA; Rehn M; Stopeck AT; Saad H
    J Bone Oncol; 2022 Jun; 34():100423. PubMed ID: 35378840
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and Validation of an Electronic Health Record-Based Machine Learning Model to Estimate Delirium Risk in Newly Hospitalized Patients Without Known Cognitive Impairment.
    Wong A; Young AT; Liang AS; Gonzales R; Douglas VC; Hadley D
    JAMA Netw Open; 2018 Aug; 1(4):e181018. PubMed ID: 30646095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Assessment of a Machine Learning Model Applied to Harmonized Electronic Health Record Data for the Prediction of Incident Atrial Fibrillation.
    Tiwari P; Colborn KL; Smith DE; Xing F; Ghosh D; Rosenberg MA
    JAMA Netw Open; 2020 Jan; 3(1):e1919396. PubMed ID: 31951272
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing the Total Health Profile, a Generalizable Unified Set of Multimorbidity Risk Scores Derived From Machine Learning for Broad Patient Populations: Retrospective Cohort Study.
    Mahajan A; Deonarine A; Bernal A; Lyons G; Norgeot B
    J Med Internet Res; 2021 Nov; 23(11):e32900. PubMed ID: 34842542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Physical activity in incident patients with pulmonary arterial and chronic thromboembolic hypertension.
    Saxer S; Lichtblau M; Berlier C; Hasler ED; Schwarz EI; Ulrich S
    Lung; 2019 Oct; 197(5):617-625. PubMed ID: 31263960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Performance of a Machine Learning Algorithm Using Electronic Health Record Data to Predict Postoperative Complications and Report on a Mobile Platform.
    Ren Y; Loftus TJ; Datta S; Ruppert MM; Guan Z; Miao S; Shickel B; Feng Z; Giordano C; Upchurch GR; Rashidi P; Ozrazgat-Baslanti T; Bihorac A
    JAMA Netw Open; 2022 May; 5(5):e2211973. PubMed ID: 35576007
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Chronic thromboembolic and pulmonary arterial hypertension share right ventricular and pulmonary artery CMR features.
    Hoette S; Creuzé N; Rochitte CE; Simonneau G; Humbert M; Souza R; Chemla D
    Pulmonology; 2019; 25(4):248-251. PubMed ID: 31080042
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Long-term survival in pulmonary arterial hypertension and chronic thromboembolic pulmonary hypertension: Insights from a referral center in Portugal.
    Santos M; Gomes A; Cruz C; Rocha J; Ricardo M; Gonçalves F; Carvalho L; Vicente M; Melo A; Reis A
    Rev Port Cardiol (Engl Ed); 2018 Sep; 37(9):749-757. PubMed ID: 30144959
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.