BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 36528971)

  • 1. Construction of artificial light-harvesting systems based on a variety of polyelectrolyte materials and application in photocatalysis.
    Ma CQ; Han N; Zhang RZ; Wang Y; Dong RZ; Liu H; Wang RZ; Yu S; Wang YB; Xing LB
    J Colloid Interface Sci; 2023 Mar; 634():54-62. PubMed ID: 36528971
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The construction of an artificial light-harvesting system with two-step sequential energy transfer based on supramolecular polymers.
    Li XL; Wang Y; Song A; Zhang MH; Jiang M; Liu H; Wang R; Yu S; Xing LB
    Soft Matter; 2021 Nov; 17(43):9871-9875. PubMed ID: 34724526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel Strategy of Constructing Artificial Light-Harvesting System with Two-Step Sequential Energy Transfer for Efficient Photocatalysis in Water.
    Wang Y; Han N; Li XL; Wang RZ; Xing LB
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45734-45741. PubMed ID: 36166320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Water-soluble phosphate-pillar[5]arene (WPP5)-based artificial light-harvesting system for photocatalytic cross-coupling dehydrogenation.
    Sun G; Li M; Cai L; Wang D; Cui Y; Hu Y; Sun T; Zhu J; Tang Y
    J Colloid Interface Sci; 2023 Jul; 641():803-811. PubMed ID: 36966569
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Construction of aggregation-induced emission photosensitizers through host-guest interactions for photooxidation reaction and light-harvesting.
    Zhang RZ; Liu H; Xin CL; Han N; Ma CQ; Yu S; Wang YB; Xing LB
    J Colloid Interface Sci; 2023 Dec; 651():894-901. PubMed ID: 37573735
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Supramolecular polymers based on host-guest interactions for the construction of artificial light-harvesting systems.
    Wang Y; Xu J; Wang R; Liu H; Yu S; Xing LB
    Spectrochim Acta A Mol Biomol Spectrosc; 2022 Oct; 279():121402. PubMed ID: 35636137
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Supramolecular Sequential Light-Harvesting Systems for Constructing White LED Device and Latent Fingerprint Imaging.
    Zhang Q; Cui F; Dang X; Wang Q; Li ZY; Sun XQ; Xiao T
    Chemistry; 2024 May; ():e202401426. PubMed ID: 38757380
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Artificial light-harvesting systems based on macrocycle-assisted supramolecular assembly in aqueous media.
    Wang K; Velmurugan K; Li B; Hu XY
    Chem Commun (Camb); 2021 Dec; 57(100):13641-13654. PubMed ID: 34871337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Construction of an Artificial Light-Harvesting System with Efficient Photocatalytic Activity in an Aqueous Solution Based on a FRET-Featuring Metallacage.
    Jia PP; Hu YX; Peng ZY; Song B; Zeng ZY; Ling QH; Zhao X; Xu L; Yang HB
    Inorg Chem; 2023 Feb; 62(5):1950-1957. PubMed ID: 35939800
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Carbazole-based artificial light-harvesting system for photocatalytic cross-coupling dehydrogenation reaction.
    Sun G; Li M; Cai L; Zhu J; Tang Y; Yao Y
    Chem Commun (Camb); 2024 Feb; 60(11):1412-1415. PubMed ID: 38205596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comprehensive Study of Artificial Light-Harvesting Systems with a Multi-Step Sequential Energy Transfer Mechanism.
    Wu Y; Wang Y; Yu X; Song Q
    Adv Sci (Weinh); 2024 Jun; ():e2404269. PubMed ID: 38874326
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Construction of an Artificial Light-Harvesting System with Photocatalytic Activity Based on
    Cen R; Liu M; Lu JH; Tao Z; Xiao X
    ACS Appl Mater Interfaces; 2024 Mar; 16(10):13132-13138. PubMed ID: 38425031
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Supramolecular assemblies working as both artificial light-harvesting system and nanoreactor for efficient organic dehalogenation in aqueous environment.
    Li X; Yu S; Shen Z; Wang R; Zhang W; Núñez-Delgado A; Han N; Xing LB
    J Colloid Interface Sci; 2022 Jul; 617():118-128. PubMed ID: 35272165
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A cavitand-based supramolecular artificial light-harvesting system with sequential energy transfer for photocatalysis.
    Liu Q; Zuo M; Wang K; Hu XY
    Chem Commun (Camb); 2023 Nov; 59(92):13707-13710. PubMed ID: 37905993
    [TBL] [Abstract][Full Text] [Related]  

  • 15. "On/Off" Switchable Sequential Light-Harvesting Systems Based on Controllable Protein Nanosheets for Regulation of Photocatalysis.
    Li Y; Xia C; Tian R; Zhao L; Hou J; Wang J; Luo Q; Xu J; Wang L; Hou C; Yang B; Sun H; Liu J
    ACS Nano; 2022 May; 16(5):8012-8021. PubMed ID: 35510764
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Self-assembled metallasupramolecular cages towards light harvesting systems for oxidative cyclization.
    Kumar A; Saha R; Mukherjee PS
    Chem Sci; 2021 Mar; 12(14):5319-5329. PubMed ID: 34163765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Supramolecular Control on the Optical Properties of a Dye-Polyelectrolyte Assembly.
    Awasthi AA; Pandey SP; Singh PK
    Chemphyschem; 2021 May; 22(10):975-984. PubMed ID: 33759328
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Porphyrin Diacid-Polyelectrolyte Assemblies: Effective Photocatalysts in Solution.
    Frühbeißer S; Mariani G; Gröhn F
    Polymers (Basel); 2016 May; 8(5):. PubMed ID: 30979275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An atomically precise silver nanocluster for artificial light-harvesting system through supramolecular functionalization.
    Das AK; Biswas S; Manna SS; Pathak B; Mandal S
    Chem Sci; 2022 Jul; 13(28):8355-8364. PubMed ID: 35919723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Carboxymethyl cellulose-based polyelectrolyte as cationic exchange membrane for zinc-iodine batteries.
    Tangthuam P; Pimoei J; Mohamad AA; Mahlendorf F; Somwangthanaroj A; Kheawhom S
    Heliyon; 2020 Oct; 6(10):e05391. PubMed ID: 33150216
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.