These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 36529075)

  • 1. The diversity of iron acquisition strategies of calcifuge plant species from dry acidic grasslands.
    Wala M; Kołodziejek J; Mazur J
    J Plant Physiol; 2023 Jan; 280():153898. PubMed ID: 36529075
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Reactions of two xeric-congeneric species of
    Wala M; Kołodziejek J; Mazur J; Cienkowska A
    PeerJ; 2021; 9():e12417. PubMed ID: 34824914
    [No Abstract]   [Full Text] [Related]  

  • 3. Growth performance and element concentrations reveal the calcicole-calcifuge behavior of three Adiantum species.
    Liao JX; Liang DY; Jiang QW; Mo L; Pu GZ; Zhang D
    BMC Plant Biol; 2020 Jul; 20(1):327. PubMed ID: 32650742
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbonate-Induced Chemical Reductants Are Responsible for Iron Acquisition in Strategy I Wild Herbaceous Plants Native to Calcareous Grasslands.
    Wang B; Wei H; Chen Z; Li Y; Zhang WH
    Plant Cell Physiol; 2022 Jun; 63(6):770-784. PubMed ID: 35348776
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acidity and availability of aluminum, iron and manganese as factors affecting germination in European acidic dry and alkaline xerothermic grasslands.
    Wala M; Kołodziejek J; Wilk T
    PeerJ; 2022; 10():e13255. PubMed ID: 35505676
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foliar application of 3-hydroxy-4-pyridinone Fe-chelate [Fe(mpp)
    Santos CS; Rodrigues E; Ferreira S; Moniz T; Leite A; Carvalho SMP; Vasconcelos MW; Rangel M
    Physiol Plant; 2021 Sep; 173(1):235-245. PubMed ID: 33629743
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metagenomic analysis of rhizosphere microbiome provides insights into occurrence of iron deficiency chlorosis in field of Asian pears.
    Jia B; Chang X; Fu Y; Heng W; Ye Z; Liu P; Liu L; Al Shoffe Y; Watkins CB; Zhu L
    BMC Microbiol; 2022 Jan; 22(1):18. PubMed ID: 34996363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manganese Toxicity in Sugarcane Plantlets Grown on Acidic Soils of Southern China.
    Huang YL; Yang S; Long GX; Zhao ZK; Li XF; Gu MH
    PLoS One; 2016; 11(3):e0148956. PubMed ID: 27023702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Alkaline stress and iron deficiency regulate iron uptake and riboflavin synthesis gene expression differently in root and leaf tissue: implications for iron deficiency chlorosis.
    Hsieh EJ; Waters BM
    J Exp Bot; 2016 Oct; 67(19):5671-5685. PubMed ID: 27605716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nitrogen signals and their ecological significance for seed germination of ten psammophilous plant species from European dry acidic grasslands.
    Wala M; Kołodziejek J; Patykowski J
    PLoS One; 2021; 16(1):e0244737. PubMed ID: 33395438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Iron Source and Medium pH Affect Nutrient Uptake and Pigment Content in
    Guo G; Xiao J; Jeong BR
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chemical evaluation of HBED/Fe(3+) and the novel HJB/Fe(3+) chelates as fertilizers to alleviate iron chlorosis.
    López-Rayo S; Hernández D; Lucena JJ
    J Agric Food Chem; 2009 Sep; 57(18):8504-13. PubMed ID: 19689133
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Root iron uptake efficiency of Ulmus laevis and U. minor and their distribution in soils of the Iberian Peninsula.
    Venturas M; Fernández V; Nadal P; Guzmán P; Lucena JJ; Gil L
    Front Plant Sci; 2014; 5():104. PubMed ID: 24723927
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The severity of iron chlorosis in sensitive plants is related to soil phosphorus levels.
    Sánchez-Rodríguez AR; del Campillo MC; Torrent J
    J Sci Food Agric; 2014 Oct; 94(13):2766-73. PubMed ID: 25328928
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effectiveness of FeEDDHA, FeEDDHMA, and FeHBED in Preventing Iron-Deficiency Chlorosis in Soybean.
    Bin LM; Weng L; Bugter MH
    J Agric Food Chem; 2016 Nov; 64(44):8273-8281. PubMed ID: 27690423
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of nitrogen and water addition on trace element stoichiometry in five grassland species.
    Cai J; Weiner J; Wang R; Luo W; Zhang Y; Liu H; Xu Z; Li H; Zhang Y; Jiang Y
    J Plant Res; 2017 Jul; 130(4):659-668. PubMed ID: 28299516
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorus toxicity, not deficiency, explains the calcifuge habit of phosphorus-efficient Proteaceae.
    Guilherme Pereira C; Hayes PE; Clode PL; Lambers H
    Physiol Plant; 2021 Jul; 172(3):1724-1738. PubMed ID: 33665808
    [TBL] [Abstract][Full Text] [Related]  

  • 18. TRACE METAL CONTENT (Cu, Zn, Mn AND Fe) IN URTICA DIOICA L. AND PLANTAGO MAJOR L.
    Krolak E; Raczuk J; Borkowska L
    Acta Pol Pharm; 2016 Nov; 73(6):1447-1453. PubMed ID: 29634097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mapping genetic loci for tolerance to lime-induced iron deficiency chlorosis in grapevine rootstocks (Vitis sp.).
    Bert PF; Bordenave L; Donnart M; Hévin C; Ollat N; Decroocq S
    Theor Appl Genet; 2013 Feb; 126(2):451-73. PubMed ID: 23139142
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Scopoletin 8-Hydroxylase-Mediated Fraxetin Production Is Crucial for Iron Mobilization.
    Tsai HH; Rodríguez-Celma J; Lan P; Wu YC; Vélez-Bermúdez IC; Schmidt W
    Plant Physiol; 2018 May; 177(1):194-207. PubMed ID: 29559590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.