BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 36529353)

  • 21. Selective anticancer activity of superparamagnetic iron oxide nanoparticles (SPIONs) against oral tongue cancer using in vitro methods: The key role of oxidative stress on cancerous mitochondria.
    Jahanbani J; Ghotbi M; Shahsavari F; Seydi E; Rahimi S; Pourahmad J
    J Biochem Mol Toxicol; 2020 Oct; 34(10):e22557. PubMed ID: 32583933
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioenergetic pathways in tumor mitochondria as targets for cancer therapy and the importance of the ROS-induced apoptotic trigger.
    Ralph SJ; Rodríguez-Enríquez S; Neuzil J; Moreno-Sánchez R
    Mol Aspects Med; 2010 Feb; 31(1):29-59. PubMed ID: 20026172
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Mitochondrion-targeted selenium nanoparticles enhance reactive oxygen species-mediated cell death.
    Zhuang Y; Li L; Feng L; Wang S; Su H; Liu H; Liu H; Wu Y
    Nanoscale; 2020 Jan; 12(3):1389-1396. PubMed ID: 31913383
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Mitochondria-targeted graphene for advanced cancer therapeutics.
    Tabish TA; Narayan RJ
    Acta Biomater; 2021 Jul; 129():43-56. PubMed ID: 33965624
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A Near-Infrared Triggered Nanophotosensitizer Inducing Domino Effect on Mitochondrial Reactive Oxygen Species Burst for Cancer Therapy.
    Yu Z; Sun Q; Pan W; Li N; Tang B
    ACS Nano; 2015 Nov; 9(11):11064-74. PubMed ID: 26456218
    [TBL] [Abstract][Full Text] [Related]  

  • 26. ATP-triggered mitochondrial cascade reactions for cancer therapy with nanoscale zeolitic imidazole framework-90.
    Pan W; Cui B; Wang K; Shi M; Lu F; Li N; Tang B
    Theranostics; 2021; 11(16):7869-7878. PubMed ID: 34335969
    [No Abstract]   [Full Text] [Related]  

  • 27. Mitochondrial Targeting Peptide-based Nanodelivery for Cancer Treatment.
    Ehsan S; Covarrubias-Zambrano O; Bossmann SH
    Curr Protein Pept Sci; 2022; 23(10):657-671. PubMed ID: 35619295
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanomedicines for Reactive Oxygen Species Mediated Approach: An Emerging Paradigm for Cancer Treatment.
    Kwon S; Ko H; You DG; Kataoka K; Park JH
    Acc Chem Res; 2019 Jul; 52(7):1771-1782. PubMed ID: 31241894
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unravelling the relationship between macroautophagy and mitochondrial ROS in cancer therapy.
    Zhao Y; Qu T; Wang P; Li X; Qiang J; Xia Z; Duan H; Huang J; Zhu L
    Apoptosis; 2016 May; 21(5):517-31. PubMed ID: 27007273
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Enhanced Reactive Oxygen Species Generation by Mitochondria Targeting of Anticancer Drug To Overcome Tumor Multidrug Resistance.
    Liu Y; Zhou Z; Lin X; Xiong X; Zhou R; Zhou M; Huang Y
    Biomacromolecules; 2019 Oct; 20(10):3755-3766. PubMed ID: 31465208
    [TBL] [Abstract][Full Text] [Related]  

  • 31. ROS as a novel indicator to predict anticancer drug efficacy.
    Zaidieh T; Smith JR; Ball KE; An Q
    BMC Cancer; 2019 Dec; 19(1):1224. PubMed ID: 31842863
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Sequential-targeting nanocarriers with pH-controlled charge reversal for enhanced mitochondria-located photodynamic-immunotherapy of cancer.
    Peng N; Yu H; Yu W; Yang M; Chen H; Zou T; Deng K; Huang S; Liu Y
    Acta Biomater; 2020 Mar; 105():223-238. PubMed ID: 31926335
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mitochondrial targeted doxorubicin derivatives delivered by ROS-responsive nanocarriers to breast tumor for overcoming of multidrug resistance.
    Zhong XC; Shi MH; Liu HN; Chen JJ; Wang TT; Lin MT; Zhang ZT; Zhou Y; Lu YY; Xu WH; Gao JQ; Xu DH; Han M; Chen YD
    Pharm Dev Technol; 2021 Jan; 26(1):21-29. PubMed ID: 33070673
    [TBL] [Abstract][Full Text] [Related]  

  • 34.
    Reshetnikov V; Özkan HG; Daum S; Janko C; Alexiou C; Sauer C; Heinrich MR; Mokhir A
    Molecules; 2020 May; 25(11):. PubMed ID: 32486084
    [TBL] [Abstract][Full Text] [Related]  

  • 35. ROS-Responsive Mitochondria-Targeting Blended Nanoparticles: Chemo- and Photodynamic Synergistic Therapy for Lung Cancer with On-Demand Drug Release upon Irradiation with a Single Light Source.
    Yue C; Yang Y; Zhang C; Alfranca G; Cheng S; Ma L; Liu Y; Zhi X; Ni J; Jiang W; Song J; de la Fuente JM; Cui D
    Theranostics; 2016; 6(13):2352-2366. PubMed ID: 27877240
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Targeting Mitochondria through the Use of Mitocans as Emerging Anticancer Agents.
    Macasoi I; Mioc A; Mioc M; Racoviceanu R; Soica I; Chevereșan A; Dehelean C; Dumitrașcu V
    Curr Med Chem; 2020; 27(34):5730-5757. PubMed ID: 31309878
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Targeting mitochondria.
    Hoye AT; Davoren JE; Wipf P; Fink MP; Kagan VE
    Acc Chem Res; 2008 Jan; 41(1):87-97. PubMed ID: 18193822
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Biological evaluation of mitochondria targeting small molecules as potent anticancer drugs.
    Luo S; Dang X; Wang J; Yuan C; Hu Y; Lei S; Zhang Y; Lu D; Jiang F; Fu L
    Bioorg Chem; 2021 Sep; 114():105055. PubMed ID: 34144278
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Mitochondrial targeting nanodrugs self-assembled from 9-O-octadecyl substituted berberine derivative for cancer treatment by inducing mitochondrial apoptosis pathways.
    Song J; Lin C; Yang X; Xie Y; Hu P; Li H; Zhu W; Hu H
    J Control Release; 2019 Jan; 294():27-42. PubMed ID: 30445003
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Targeting mitochondrial metabolism for precision medicine in cancer.
    Sainero-Alcolado L; Liaño-Pons J; Ruiz-Pérez MV; Arsenian-Henriksson M
    Cell Death Differ; 2022 Jul; 29(7):1304-1317. PubMed ID: 35831624
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.