These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 36529710)

  • 1. Automated detection of toxicophores and prediction of mutagenicity using PMCSFG algorithm.
    Schietgat L; Cuissart B; De Grave K; Efthymiadis K; Bureau R; Crémilleux B; Ramon J; Lepailleur A
    Mol Inform; 2023 Mar; 42(3):e2200232. PubMed ID: 36529710
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Derivation and validation of toxicophores for mutagenicity prediction.
    Kazius J; McGuire R; Bursi R
    J Med Chem; 2005 Jan; 48(1):312-20. PubMed ID: 15634026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computing similarity between structural environments of mutagenicity alerts.
    Chakravarti SK; Saiakhov RD
    Mutagenesis; 2019 Mar; 34(1):55-65. PubMed ID: 30346583
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimizing machine-learning models for mutagenicity prediction through better feature selection.
    Shinada NK; Koyama N; Ikemori M; Nishioka T; Hitaoka S; Hakura A; Asakura S; Matsuoka Y; Palaniappan SK
    Mutagenesis; 2022 Oct; 37(3-4):191-202. PubMed ID: 35554560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Machine learning - Predicting Ames mutagenicity of small molecules.
    Chu CSM; Simpson JD; O'Neill PM; Berry NG
    J Mol Graph Model; 2021 Dec; 109():108011. PubMed ID: 34555723
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction on the mutagenicity of nitroaromatic compounds using quantum chemistry descriptors based QSAR and machine learning derived classification methods.
    Hao Y; Sun G; Fan T; Sun X; Liu Y; Zhang N; Zhao L; Zhong R; Peng Y
    Ecotoxicol Environ Saf; 2019 Dec; 186():109822. PubMed ID: 31634658
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MutagenPred-GCNNs: A Graph Convolutional Neural Network-Based Classification Model for Mutagenicity Prediction with Data-Driven Molecular Fingerprints.
    Li S; Zhang L; Feng H; Meng J; Xie D; Yi L; Arkin IT; Liu H
    Interdiscip Sci; 2021 Mar; 13(1):25-33. PubMed ID: 33506363
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient calculation of compound similarity based on maximum common subgraphs and its application to prediction of gene transcript levels.
    Berlo RJ; Winterbach W; Groot MJ; Bender A; Verheijen PJ; Reinders MJ; Ridder DD
    Int J Bioinform Res Appl; 2013; 9(4):407-32. PubMed ID: 23797997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Maximum Common Subgraph Isomorphism Algorithms for the Alignment of 2D Chemical Structures.
    Duesbury E; Holliday J; Willett P
    ChemMedChem; 2018 Mar; 13(6):588-598. PubMed ID: 29057611
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A maximum common substructure-based algorithm for searching and predicting drug-like compounds.
    Cao Y; Jiang T; Girke T
    Bioinformatics; 2008 Jul; 24(13):i366-74. PubMed ID: 18586736
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR modeling without descriptors using graph convolutional neural networks: the case of mutagenicity prediction.
    Hung C; Gini G
    Mol Divers; 2021 Aug; 25(3):1283-1299. PubMed ID: 34146224
    [TBL] [Abstract][Full Text] [Related]  

  • 12. In Silico Prediction of Chemical Toxicity Profile Using Local Lazy Learning.
    Lu J; Zhang P; Zou XW; Zhao XQ; Cheng KG; Zhao YL; Bi Y; Zheng MY; Luo XM
    Comb Chem High Throughput Screen; 2017; 20(4):346-353. PubMed ID: 28215144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Merging applicability domains for in silico assessment of chemical mutagenicity.
    Liu R; Wallqvist A
    J Chem Inf Model; 2014 Mar; 54(3):793-800. PubMed ID: 24494696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computational derivation of structural alerts from large toxicology data sets.
    Ahlberg E; Carlsson L; Boyer S
    J Chem Inf Model; 2014 Oct; 54(10):2945-52. PubMed ID: 25275755
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identification of Nontoxic Substructures: A New Strategy to Avoid Potential Toxicity Risk.
    Yang H; Sun L; Li W; Liu G; Tang Y
    Toxicol Sci; 2018 Oct; 165(2):396-407. PubMed ID: 29893961
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds.
    Helma C; Cramer T; Kramer S; De Raedt L
    J Chem Inf Comput Sci; 2004; 44(4):1402-11. PubMed ID: 15272848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In-silico predictive mutagenicity model generation using supervised learning approaches.
    Seal A; Passi A; Jaleel UA; ; Wild DJ
    J Cheminform; 2012 May; 4(1):10. PubMed ID: 22587596
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Extending (Q)SARs to incorporate proprietary knowledge for regulatory purposes: is aromatic N-oxide a structural alert for predicting DNA-reactive mutagenicity?
    Amberg A; Anger LT; Bercu J; Bower D; Cross KP; Custer L; Harvey JS; Hasselgren C; Honma M; Johnson C; Jolly R; Kenyon MO; Kruhlak NL; Leavitt P; Quigley DP; Miller S; Snodin D; Stavitskaya L; Teasdale A; Trejo-Martin A; White AT; Wichard J; Myatt GJ
    Mutagenesis; 2019 Mar; 34(1):67-82. PubMed ID: 30189015
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A maximum common subgraph kernel method for predicting the chromosome aberration test.
    Mohr J; Jain B; Sutter A; Laak AT; Steger-Hartmann T; Heinrich N; Obermayer K
    J Chem Inf Model; 2010 Oct; 50(10):1821-38. PubMed ID: 20883013
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Clique-detection algorithms for matching three-dimensional molecular structures.
    Gardiner EJ; Artymiuk PJ; Willett P
    J Mol Graph Model; 1997 Aug; 15(4):245-53. PubMed ID: 9524934
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.