These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 36529807)
1. Radiomics based on preoperative rectal cancer MRI to predict the metachronous liver metastasis. Li ZF; Kang LQ; Liu FH; Zhao M; Guo SY; Lu S; Quan S Abdom Radiol (NY); 2023 Mar; 48(3):833-843. PubMed ID: 36529807 [TBL] [Abstract][Full Text] [Related]
2. [Application of MRI-based Radiomics Models in the Assessment of Hepatic Metastasis of Rectal Cancer]. Hu SX; Yang K; Wang XR; Wen DG; Xia CC; Li X; Li ZL Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Mar; 52(2):311-318. PubMed ID: 33829708 [TBL] [Abstract][Full Text] [Related]
3. Biparametric magnetic resonance imaging-based radiomics features for prediction of lymphovascular invasion in rectal cancer. Tong P; Sun D; Chen G; Ni J; Li Y BMC Cancer; 2023 Jan; 23(1):61. PubMed ID: 36650498 [TBL] [Abstract][Full Text] [Related]
4. Machine Learning-based Analysis of Rectal Cancer MRI Radiomics for Prediction of Metachronous Liver Metastasis. Liang M; Cai Z; Zhang H; Huang C; Meng Y; Zhao L; Li D; Ma X; Zhao X Acad Radiol; 2019 Nov; 26(11):1495-1504. PubMed ID: 30711405 [TBL] [Abstract][Full Text] [Related]
5. Magnetic resonance imaging-radiomics evaluation of response to chemotherapy for synchronous liver metastasis of colorectal cancer. Ma YQ; Wen Y; Liang H; Zhong JG; Pang PP World J Gastroenterol; 2021 Oct; 27(38):6465-6475. PubMed ID: 34720535 [TBL] [Abstract][Full Text] [Related]
6. Multi-modal radiomics model to predict treatment response to neoadjuvant chemotherapy for locally advanced rectal cancer. Li ZY; Wang XD; Li M; Liu XJ; Ye Z; Song B; Yuan F; Yuan Y; Xia CC; Zhang X; Li Q World J Gastroenterol; 2020 May; 26(19):2388-2402. PubMed ID: 32476800 [TBL] [Abstract][Full Text] [Related]
7. Multiparameter MRI-based radiomics for preoperative prediction of extramural venous invasion in rectal cancer. Shu Z; Mao D; Song Q; Xu Y; Pang P; Zhang Y Eur Radiol; 2022 Feb; 32(2):1002-1013. PubMed ID: 34482429 [TBL] [Abstract][Full Text] [Related]
8. MRI radiomics analysis for predicting preoperative synchronous distant metastasis in patients with rectal cancer. Liu H; Zhang C; Wang L; Luo R; Li J; Zheng H; Yin Q; Zhang Z; Duan S; Li X; Wang D Eur Radiol; 2019 Aug; 29(8):4418-4426. PubMed ID: 30413955 [TBL] [Abstract][Full Text] [Related]
9. Radiomics based on T2-weighted and diffusion-weighted MR imaging for preoperative prediction of tumor deposits in rectal cancer. Sun Z; Xia F; Lv W; Li J; Zou Y; Wu J Am J Surg; 2024 Jun; 232():59-67. PubMed ID: 38272767 [TBL] [Abstract][Full Text] [Related]
10. [Application of Automated Machine Learning Based on Radiomics Features of T2WI and RS-EPI DWI to Predict Preoperative T Staging of Rectal Cancer]. Wen DG; Hu SX; Li ZL; Deng XB; Tian C; Li X; Wang XR; Leng Q; Xia CC Sichuan Da Xue Xue Bao Yi Xue Ban; 2021 Jul; 52(4):698-705. PubMed ID: 34323052 [TBL] [Abstract][Full Text] [Related]
11. Development and external validation of a multiparametric MRI-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer: a retrospective multicenter study. Li Z; Zhang J; Zhong Q; Feng Z; Shi Y; Xu L; Zhang R; Yu F; Lv B; Yang T; Huang C; Cui F; Chen F Eur Radiol; 2023 Mar; 33(3):1835-1843. PubMed ID: 36282309 [TBL] [Abstract][Full Text] [Related]
12. [Radiomics-based prediction of microsatellite instability in stage Ⅱ and Ⅲ rectal cancer patients based on T2WI MRI and diffusion-weighted imaging]. Xiang S; Zheng LB; Zhu L; Gao Y; Wang DS; Liu SL; Zhang S; Wang TY; Lu Y Zhonghua Wai Ke Za Zhi; 2023 Sep; 61(9):782-787. PubMed ID: 37491171 [No Abstract] [Full Text] [Related]
13. A Nomogram of Combining IVIM-DWI and MRI Radiomics From the Primary Lesion of Rectal Adenocarcinoma to Assess Nonenlarged Lymph Node Metastasis Preoperatively. Jia H; Jiang X; Zhang K; Shang J; Zhang Y; Fang X; Gao F; Li N; Dong J J Magn Reson Imaging; 2022 Sep; 56(3):658-667. PubMed ID: 35090079 [TBL] [Abstract][Full Text] [Related]
14. A nomogram based on MRI radiomics features of mesorectal fat for diagnosing T2- and T3-stage rectal cancer. Deng B; Wang Q; Liu Y; Yang Y; Gao X; Dai H Abdom Radiol (NY); 2024 Jun; 49(6):1850-1860. PubMed ID: 38349392 [TBL] [Abstract][Full Text] [Related]
15. T2WI-based MRI radiomics for the prediction of preoperative extranodal extension and prognosis in resectable rectal cancer. Li H; Chai L; Pu H; Yin LL; Li M; Zhang X; Liu YS; Pang MH; Lu T Insights Imaging; 2024 Feb; 15(1):57. PubMed ID: 38411722 [TBL] [Abstract][Full Text] [Related]
16. [A prediction model of pathological complete response in patients with locally advanced rectal cancer after PD-1 antibody combined with total neoadjuvant chemoradiotherapy based on MRI radiomics]. Zhang XY; Zhu HT; Li XT; Li YJ; Li ZW; Wang WH; Wu AW; Sun YS; Zhang L Zhonghua Wei Chang Wai Ke Za Zhi; 2022 Mar; 25(3):228-234. PubMed ID: 35340172 [No Abstract] [Full Text] [Related]
17. A combinatorial MRI sequence-based radiomics model for preoperative prediction of microsatellite instability status in rectal cancer. Xing X; Li D; Peng J; Shu Z; Zhang Y; Song Q Sci Rep; 2024 May; 14(1):11760. PubMed ID: 38783014 [TBL] [Abstract][Full Text] [Related]
18. Development of a joint prediction model based on both the radiomics and clinical factors for preoperative prediction of circumferential resection margin in middle-low rectal cancer using T2WI images. Ju Y; Zheng L; Qi W; Tian G; Lu Y Med Phys; 2024 Apr; 51(4):2563-2577. PubMed ID: 37987563 [TBL] [Abstract][Full Text] [Related]
19. Comparison of preoperative CT- and MRI-based multiparametric radiomics in the prediction of lymph node metastasis in rectal cancer. Niu Y; Yu X; Wen L; Bi F; Jian L; Liu S; Yang Y; Zhang Y; Lu Q Front Oncol; 2023; 13():1230698. PubMed ID: 38074652 [TBL] [Abstract][Full Text] [Related]
20. Preoperative Noninvasive Evaluation of Tumor Budding in Rectal Cancer Using Multiparameter MRI Radiomics. Peng L; Wang D; Zhuang Z; Chen X; Xue J; Zhu H; Zhang L Acad Radiol; 2024 Jun; 31(6):2334-2345. PubMed ID: 38135624 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]