These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 3653003)

  • 1. Ciliary band formation in the doliolaria larva of Florometra. II. Development of anterior and posterior half-embryos and the role of the mesentoderm.
    Lacalli TC; West JE
    Development; 1987 Feb; 99(2):273-84. PubMed ID: 3653003
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ciliary band formation in the doliolaria larva of Florometra. I. The development of normal epithelial pattern.
    Lacalli TC; West JE
    J Embryol Exp Morphol; 1986 Jul; 96():303-23. PubMed ID: 3805989
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fine structure of the doliolaria larva of the feather star Florometra serratissima (Echinodermata: Crinoidea), with special emphasis on the nervous system.
    Chia FS; Burke RD; Koss R; Mladenov PV; Rumrill SS
    J Morphol; 1986 Aug; 189(2):99-120. PubMed ID: 29940709
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of ciliary bands in larvae of the living isocrinid sea lily
    Amemiya S; Hibino T; Nakano H; Yamaguchi M; Kuraishi R; Kiyomoto M
    Acta Zool; 2015 Jan; 96(1):36-43. PubMed ID: 25641974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Larval stages of a living sea lily (stalked crinoid echinoderm).
    Nakano H; Hibino T; Oji T; Hara Y; Amemiya S
    Nature; 2003 Jan; 421(6919):158-60. PubMed ID: 12520300
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Gene expression analysis of Six3, Pax6, and Otx in the early development of the stalked crinoid Metacrinus rotundus.
    Omori A; Akasaka K; Kurokawa D; Amemiya S
    Gene Expr Patterns; 2011; 11(1-2):48-56. PubMed ID: 20837165
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Complete mitochondrial genome of the crinoid echinoderm,
    Nam SE; Park HS; Rhee JS
    Mitochondrial DNA B Resour; 2020 Jan; 5(1):852-853. PubMed ID: 33366781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nervous system development of two crinoid species, the sea lily Metacrinus rotundus and the feather star Oxycomanthus japonicus.
    Nakano H; Nakajima Y; Amemiya S
    Dev Genes Evol; 2009 Dec; 219(11-12):565-76. PubMed ID: 20099068
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamics of the control of body pattern in the development of Xenopus laevis. I. Timing and pattern in the development of dorsoanterior and posterior blastomere pairs, isolated at the 4-cell stage.
    Cooke J; Webber JA
    J Embryol Exp Morphol; 1985 Aug; 88():85-112. PubMed ID: 4078542
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cell number in relation to primary pattern formation in the embryo of Xenopus laevis. II. Sequential cell recruitment, and control of the cell cycle, during mesoderm formation.
    Cooke J
    J Embryol Exp Morphol; 1979 Oct; 53():269-89. PubMed ID: 536690
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A novel mitochondrial gene order in the crinoid echinoderm Florometra serratissima.
    Scouras A; Smith MJ
    Mol Biol Evol; 2001 Jan; 18(1):61-73. PubMed ID: 11141193
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Clonal analysis of epiblast fate during germ layer formation in the mouse embryo.
    Lawson KA; Meneses JJ; Pedersen RA
    Development; 1991 Nov; 113(3):891-911. PubMed ID: 1821858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gastrulation and larval pattern in Xenopus after blastocoelic injection of a Xenopus-derived inducing factor: experiments testing models for the normal organization of mesoderm.
    Cooke J; Smith JC
    Dev Biol; 1989 Feb; 131(2):383-400. PubMed ID: 2912801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The appearance and extension of neural differentiation tendencies in the neurectoderm of the early chick embryo.
    Rao BR
    Wilhelm Roux Arch Entwickl Mech Org; 1968 Jun; 160(2):187-236. PubMed ID: 28304523
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanisms of early Drosophila mesoderm formation.
    Leptin M; Casal J; Grunewald B; Reuter R
    Dev Suppl; 1992; ():23-31. PubMed ID: 1299365
    [TBL] [Abstract][Full Text] [Related]  

  • 16. State of commitment of prospective neural plate and prospective mesoderm in late gastrula/early neurula stages of avian embryos.
    Garcia-Martinez V; Darnell DK; Lopez-Sanchez C; Sosic D; Olson EN; Schoenwolf GC
    Dev Biol; 1997 Jan; 181(1):102-15. PubMed ID: 9015268
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Signs of the principle body axes prior to primitive streak formation in the rabbit embryo.
    Viebahn C; Mayer B; Hrabé de Angelis M
    Anat Embryol (Berl); 1995 Aug; 192(2):159-69. PubMed ID: 7486012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fibroblast growth factor is a direct neural inducer, which combined with noggin generates anterior-posterior neural pattern.
    Lamb TM; Harland RM
    Development; 1995 Nov; 121(11):3627-36. PubMed ID: 8582276
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Desmote inops sp. n. and Fallacohospes inchoatus gen. and sp. n., Umagillid rhabdocoels from the intestine of the crinoid Florometra serratissima (A. H. Clark).
    Kozloff EN
    J Parasitol; 1965 Jun; 51(3):305-12. PubMed ID: 5841328
    [No Abstract]   [Full Text] [Related]  

  • 20. Nervous system development of the sea cucumber Stichopus japonicus.
    Nakano H; Murabe N; Amemiya S; Nakajima Y
    Dev Biol; 2006 Apr; 292(1):205-12. PubMed ID: 16442090
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.