These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 36530330)

  • 1. Multifactor Prediction of the Water Richness of Coal Roof Aquifers Based on the Combination Weighting Method and TOPSIS Model: A Case Study in the Changcheng No. 1 Coal Mine.
    Qiu M; Yin X; Shi L; Zhai P; Gai G; Shao Z
    ACS Omega; 2022 Dec; 7(49):44984-45003. PubMed ID: 36530330
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Water-richness evaluation method and application of clastic rock aquifer in mining seam roof.
    Qiu M; Shao Z; Zhang W; Zheng Y; Yin X; Gai G; Han Z; Zhao J
    Sci Rep; 2024 Mar; 14(1):6465. PubMed ID: 38499707
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study on the water-richness law and zoning assessment of mine water-bearing aquifers based on sedimentary characteristics.
    Wang Y; Pu Z; Ge Q; Liu J
    Sci Rep; 2022 Aug; 12(1):14107. PubMed ID: 35982098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A Multifactor Quantitative Assessment Model for Safe Mining after Roof Drainage in the Liangshuijing Coal Mine.
    Gao C; Wang D; Liu K; Deng G; Li J; Jie B
    ACS Omega; 2022 Aug; 7(30):26437-26454. PubMed ID: 35936470
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of water richness in coal seam roof aquifer based on factor optimization and random forest method.
    Gai G; Qiu M; Zhang W; Shi L
    Sci Rep; 2024 Oct; 14(1):24421. PubMed ID: 39424913
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Study of roof water inrush forecasting based on EM-FAHP two-factor model.
    Liu W; Zheng Q; Pang L; Dou W; Meng X
    Math Biosci Eng; 2021 Jun; 18(5):4987-5005. PubMed ID: 34517474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Analysis of hydrochemical evolution in main discharge aquifers under mining disturbance and water source identification.
    Chen Y; Zhu S; Yang C; Xiao S
    Environ Sci Pollut Res Int; 2021 Jun; 28(21):26784-26793. PubMed ID: 33501572
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Water-inrush mechanism from the head-on working face roof in a Jurassic coal seam in the Ordos Basin.
    Shi L; Qu X; Qiu M; Han J; Zhang W
    PLoS One; 2024; 19(3):e0298399. PubMed ID: 38470875
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Gray Evaluation of Water Inrush Risk in Deep Mining Floor.
    Qu X; Yu X; Qu X; Qiu M; Gao W
    ACS Omega; 2021 Jun; 6(22):13970-13986. PubMed ID: 34124422
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Study of the development patterns of water-conducting fracture zones under karst aquifers and the mechanism of water inrush.
    Zheng L; Wang X; Lan H; Ren W; Tian Y; Xu J; Tian S
    Sci Rep; 2024 Sep; 14(1):20790. PubMed ID: 39242957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geological exploration of coal mine burnt rock and waterlogged area boundary based on transient electromagnetic and high-density electrical resistivity.
    Yang Y; Zhao C; Di Y; Li Q
    Sci Rep; 2024 Mar; 14(1):5105. PubMed ID: 38429304
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Experimental research on compressive strength deterioration of coal seam floor sandstone under the action of acidic mine drainage.
    Han W; Chen Z; Liu H; Zheng X; Wu J; Yuan Q
    Sci Rep; 2024 Feb; 14(1):4593. PubMed ID: 38409267
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical research on reasonable shield support capacity in close-multiple coal seams with the coordinated mining: A case study of Qianjiaying coal mine.
    Li Y; Ren Y; Lei X; Wang N; Jin X; Li G
    PLoS One; 2022; 17(10):e0276101. PubMed ID: 36256649
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Safety and high-recovery mechanisms and application research for initial mining of thick-coal-seam with complex structure and thick-hard roof.
    Chang Z; Wang X; Qin D; Yu J; Chen X; Wang J; Niu Z; Qian C
    Sci Rep; 2024 Aug; 14(1):19638. PubMed ID: 39179788
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of coal seam floor water bursting in multi-aquifer Gequan coal mine, China.
    Lv S; Zeng Y; Zhang L; Zhao H
    Sci Rep; 2022 Oct; 12(1):18076. PubMed ID: 36302953
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mine Water Inrush Risk Assessment Evaluation Based on the GIS and Combination Weight-Cloud Model: A Case Study.
    Liu W; Han M; Meng X; Qin Y
    ACS Omega; 2021 Dec; 6(48):32671-32681. PubMed ID: 34901616
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Evaluation on the Risk of Water Inrush Due to Roof Bed Separation Based on Improved Set Pair Analysis-Variable Fuzzy Sets.
    Li X; Zhang W; Wang X; Wang Z; Pang C
    ACS Omega; 2022 Mar; 7(11):9430-9442. PubMed ID: 35350366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Roof structure of shallow coal seam group mining in Western China.
    Cao J; Huang Q
    PLoS One; 2021; 16(8):e0255047. PubMed ID: 34383761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Study on the damage characteristics of overburden of mining roof in deeply buried coal seam.
    Long T; Hou E; Xie X; Fan Z; Tan E
    Sci Rep; 2022 Jul; 12(1):11141. PubMed ID: 35778594
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Improved Combination Weighted Prediction Model of Aquifer Water Abundance Based on a Cloud Model.
    Cheng W; Dong F; Tang R; Yin H; Shi L; Zhai Y; Li X
    ACS Omega; 2022 Oct; 7(40):35840-35850. PubMed ID: 36249369
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.