BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 36530406)

  • 1. Predicting RNA secondary structure by a neural network: what features may be learned?
    Grigorashvili EI; Chervontseva ZS; Gelfand MS
    PeerJ; 2022; 10():e14335. PubMed ID: 36530406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Accurate prediction of RNA secondary structure including pseudoknots through solving minimum-cost flow with learned potentials.
    Gong T; Ju F; Bu D
    Commun Biol; 2024 Mar; 7(1):297. PubMed ID: 38461362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. DEGnext: classification of differentially expressed genes from RNA-seq data using a convolutional neural network with transfer learning.
    Kakati T; Bhattacharyya DK; Kalita JK; Norden-Krichmar TM
    BMC Bioinformatics; 2022 Jan; 23(1):17. PubMed ID: 34991439
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting RNA secondary structure via adaptive deep recurrent neural networks with energy-based filter.
    Lu W; Tang Y; Wu H; Huang H; Fu Q; Qiu J; Li H
    BMC Bioinformatics; 2019 Dec; 20(Suppl 25):684. PubMed ID: 31874602
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct Inference of Base-Pairing Probabilities with Neural Networks Improves Prediction of RNA Secondary Structures with Pseudoknots.
    Akiyama M; Sakakibara Y; Sato K
    Genes (Basel); 2022 Nov; 13(11):. PubMed ID: 36421829
    [TBL] [Abstract][Full Text] [Related]  

  • 6. UFold: fast and accurate RNA secondary structure prediction with deep learning.
    Fu L; Cao Y; Wu J; Peng Q; Nie Q; Xie X
    Nucleic Acids Res; 2022 Feb; 50(3):e14. PubMed ID: 34792173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fast and accurate microRNA search using CNN.
    Tang X; Sun Y
    BMC Bioinformatics; 2019 Dec; 20(Suppl 23):646. PubMed ID: 31881831
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RNA secondary structure prediction with convolutional neural networks.
    Saman Booy M; Ilin A; Orponen P
    BMC Bioinformatics; 2022 Feb; 23(1):58. PubMed ID: 35109787
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Direct identification of base-paired RNA nucleotides by correlated chemical probing.
    Krokhotin A; Mustoe AM; Weeks KM; Dokholyan NV
    RNA; 2017 Jan; 23(1):6-13. PubMed ID: 27803152
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermodynamics of unpaired terminal nucleotides on short RNA helixes correlates with stacking at helix termini in larger RNAs.
    Burkard ME; Kierzek R; Turner DH
    J Mol Biol; 1999 Jul; 290(5):967-82. PubMed ID: 10438596
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting RNA solvent accessibility from multi-scale context feature via multi-shot neural network.
    Fan XQ; Hu J; Tang YX; Jia NX; Yu DJ; Zhang GJ
    Anal Biochem; 2022 Oct; 654():114802. PubMed ID: 35809650
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structure and function of the conserved 690 hairpin in Escherichia coli 16 S ribosomal RNA: analysis of the stem nucleotides.
    Morosyuk SV; Lee K; SantaLucia J; Cunningham PR
    J Mol Biol; 2000 Jun; 300(1):113-26. PubMed ID: 10864503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. New in silico approach to assessing RNA secondary structures with non-canonical base pairs.
    Rybarczyk A; Szostak N; Antczak M; Zok T; Popenda M; Adamiak R; Blazewicz J; Szachniuk M
    BMC Bioinformatics; 2015 Sep; 16(1):276. PubMed ID: 26329823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Deep neural networks for human microRNA precursor detection.
    Zheng X; Fu X; Wang K; Wang M
    BMC Bioinformatics; 2020 Jan; 21(1):17. PubMed ID: 31931701
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A deep recurrent neural network discovers complex biological rules to decipher RNA protein-coding potential.
    Hill ST; Kuintzle R; Teegarden A; Merrill E; Danaee P; Hendrix DA
    Nucleic Acids Res; 2018 Sep; 46(16):8105-8113. PubMed ID: 29986088
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Research on RNA secondary structure predicting via bidirectional recurrent neural network.
    Lu W; Cao Y; Wu H; Ding Y; Song Z; Zhang Y; Fu Q; Li H
    BMC Bioinformatics; 2021 Sep; 22(Suppl 3):431. PubMed ID: 34496763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Predicting RNA Secondary Structure Using In Vitro and In Vivo Data.
    Delli Ponti R; Tartaglia GG
    Methods Mol Biol; 2022; 2404():43-52. PubMed ID: 34694602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. R5hmCFDV: computational identification of RNA 5-hydroxymethylcytosine based on deep feature fusion and deep voting.
    Shi H; Zhang S; Li X
    Brief Bioinform; 2022 Sep; 23(5):. PubMed ID: 35945157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evidence for Watson-Crick and not Hoogsteen or wobble base pairing in the selection of nucleotides for insertion opposite pyrimidines and a thymine dimer by yeast DNA pol eta.
    Hwang H; Taylor JS
    Biochemistry; 2005 Mar; 44(12):4850-60. PubMed ID: 15779911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. RNA internal loops with tandem AG pairs: the structure of the 5'GAGU/3'UGAG loop can be dramatically different from others, including 5'AAGU/3'UGAA.
    Hammond NB; Tolbert BS; Kierzek R; Turner DH; Kennedy SD
    Biochemistry; 2010 Jul; 49(27):5817-27. PubMed ID: 20481618
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.